ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint contributions of the Pierre Auger and Telescope Array Collaborations to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013: cross-calibration of the fluorescence telescopes, large scale anisotropies and mass composition.
The amplitude and phase of the cosmic ray anisotropy are well established experimentally between 10^{11} eV and 10^{14} eV. The study of their evolution into the energy region 10^{14}-10^{16} eV can provide a significant tool for the understanding of the steepening (knee) of the primary spectrum. In this letter we extend the EAS-TOP measurement performed at E_0 around 10^{14} eV, to higher energies by using the full data set (8 years of data taking). Results derived at about 10^{14} and 4x10^{14} eV are compared and discussed. Hints of increasing amplitude and change of phase above 10^{14} eV are reported. The significance of the observation for the understanding of cosmic ray propagation is discussed.
110 - Piera L. Ghia 2007
The building block of the surface detector of the Pierre Auger Observatory is a water Cherenkov tank. The response to shower particles is simulated using a dedicated program based on GEANT4. To check the simulation chain, we compare the simulated sig nals produced by cosmic muons at various zenith angles with experimental data from a special Cherenkov detector equipped with a muon hodoscope. The signals from muon-decay electrons and the evolution of the charge with water level are also studied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا