ترغب بنشر مسار تعليمي؟ اضغط هنا

330 - T. Abu-Zayyad , R. Aida , M. Allen 2012
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.
We study the capture of dark matter particles by neutron stars in close binary systems. By performing a direct numerical simulation, we find that there is a sizable amplification of the rate of dark matter capture by each of the companions. In case o f the binary pulsar PSR J1906+0746 with the orbital period of 4 hours the amplification factor is 3.5. This amplification can be attributed to the energy loss by dark matter particles resulting from their gravitational scattering off moving companions.
We argue that current neutron star observations exclude asymmetric bosonic non-interacting dark matter in the range from 2 keV to 16 GeV, including the 5-15 GeV range favored by DAMA and CoGeNT. If bosonic WIMPs are composite of fermions, the same li mits apply provided the compositeness scale is higher than ~10^12 GeV (for WIMP mass ~1 GeV). In case of repulsive self-interactions, we exclude large range of WIMP masses and interaction cross sections which complements the constraints imposed by observations of the Bullet Cluster.
We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates.
Stereo data collected by the HiRes experiment over a six year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby Universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic ray flux depends essentially on a single free parameter, the typical deflection angle theta. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless theta is larger than 10 degrees and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.
58 - V. A. Rubakov INR 2008
We review some theoretical and phenomenological aspects of massive gravities in 4 dimensions. We start from the Fierz--Pauli theory with Lorentz-invariant mass terms and then proceed to Lorentz-violating masses. Unlike the former theory, some models with Lorentz-violation have no pathologies in the spectrum in flat and nearly flat backgrounds and lead to interesting phenomenology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا