ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - Peter Steinberg 2012
Prompt photons are a powerful tool to study heavy ion collisions. Their production rates provide access to the initial state parton distribution functions and also provide a means to calibrate the expected energy of jets that are produced in the medi um. The ATLAS detector measures photons with its hermetic, longitudinally segmented calorimeter, which gives excellent spatial and energy resolutions, and detailed information about the shower shape of each measured photon. This provides significant rejection against the expected background from the decays of neutral pions in jets. Rejection against jet fragmentation products is further enhanced by requiring candidate photons to be isolated. First results on the spectra of isolated prompt photons from a dataset with an integrated luminosity of approximately 0.13 nb^-1 of lead-lead collisions at sqrt(s_NN)=2.76 TeV are shown as a function of transverse momentum and centrality. The measured spectra are compared to expectations from perturbative QCD calculations.
Results are presented from the ATLAS collaboration from the 2010 LHC heavy ion run, during which nearly 10 inverse microbarns of luminosity were delivered. Soft physics results include charged particle multiplicities and collective flow. The charged particle multiplicity, which tracks initial state entropy production, increases by a factor of two relative to the top RHIC energy, with a centrality dependence very similar to that already measured at RHIC. Measurements of elliptic flow out to large transverse momentum also show similar results to what was measured at RHIC, but no significant pseudorapidity dependence. Extensions of these measurements to higher harmonics have also been made, and can be used to explain structures in the two-particle correlation functions that had long been attributed to jet-medium interactions. New hard probe measurements include single muons, jets and high $p_T$ hadrons. Single muons at high momentum are used to extract the yield of $W^{pm}$ bosons and are found to be consistent within statistical uncertainties with binary collision scaling. Conversely, jets are found to be suppressed in central events by a factor of two relative to peripheral events, with no significant dependence on the jet energy. Fragmentation functions are also found to be the same in central and peripheral events. Finally, charged hadrons have been measured out to 30 GeV, and their centrality dependence relative to peripheral events is similar to that found for jets.
133 - Peter Steinberg 2009
The RHIC program was intended to identify and study the quark-gluon plasma formed in the collision of heavy nuclei. The discovery of the perfect liquid is an essential step towards the understanding of the medium formed in these collisions. Much of d ata relevant to this was provided by the study of soft observables, which involve many particles of low momentum produced in nearly every event, rather than high momentum particles produced in rare events. The main results related to soft physics at RHIC are discussed, as well as their implications for the physics of the LHC heavy ion program.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا