ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross sections of $^{120}$Sn($alpha$,$alpha$)$^{120}$Sn elastic scattering have been extracted from the $alpha$ particle beam contamination of a recent $^{120}$Sn($^6$He,$^6$He)$^{120}$Sn experiment. Both reactions are analyzed using systematic doubl e folding potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential extracted from the $^{120}$Sn($^6$He,$^6$He)$^{120}$Sn data may be used as the basis for the construction of a simple global $^6$He optical potential. The comparison of the $^6$He and $alpha$ data shows that the halo nature of the $^6$He nucleus leads to a clear signature in the reflexion coefficients $eta_L$: the relevant angular momenta $L$ with $eta_L gg 0$ and $eta_L ll 1$ are shifted to larger $L$ with a broader distribution. This signature is not present in the $alpha$ scattering data and can thus be used as a new criterion for the definition of a halo nucleus.
The 16O(p,gamma)17F reaction rate is revisited with special emphasis on the stellar temperature range of T=60-100 MK important for hot bottom burning in asymptotic giant branch (AGB) stars. We evaluate existing cross section data that were obtained s ince 1958 and, if appropriate, correct published data for systematic errors that were not noticed previously, including the effects of coincidence summing and updated effective stopping powers. The data are interpreted by using two different models of nuclear reactions, that is, a potential model and R-matrix theory. A new astrophysical S-factor and recommended thermonuclear reaction rates are presented. As a result of our work, the 16O(p,gamma)17F reaction has now the most precisely known rate involving any target nucleus in the mass A >= 12 range, with reaction rate errors of about 7% over the entire temperature region of astrophysical interest (T=0.01-2.5 GK). The impact of the present improved reaction rate with its significantly reduced uncertainties on the hot bottom burning in AGB stars is discussed. In contrast to earlier results we find now that there is not clear evidence to date for any stellar grain origin from massive AGB stars.
120 - P. Mohr , S. Brieger , G. Witucki 2007
The properties of a clinical LINAC are investigated for a study of photoactivation cross sections slightly above the neutron threshold. As an example, the photoactivation of a tiny amount of gold by the 197Au(gamma,n)196Au reaction has been measured. The derived photon intensity is at least comparable to conventional and widely used photon sources. In combination with its extremely stable operation, a clinical LINAC ensures that photoactivation studies can be performed for a wide number of targets with very limited beamtime.
Photon-induced reactions play a key role in the nucleosynthesis of rare neutron-deficient p-nuclei. The paper focuses on (gamma,alpha), (gamma,p), and (gamma,n) reactions which define the corresponding p-process path. The relation between stellar rea ction rates and laboratory cross sections is analyzed for photon-induced reactions and their inverse capture reactions to evaluate various experimental approaches. An improved version S_C(E) of the astrophysical S-factor is suggested which is based on the Coulomb wave functions. S_C(E) avoids the apparent energy dependence which is otherwise obtained for capture reactions on heavy nuclei. It is found that a special type of synchrotron radiation available at SPring-8 that mimics stellar blackbody radiation at billions of Kelvin is a promising tool for future experiments. By using the blackbody synchrotron radiation, sufficient event rates for (gamma,alpha) and (gamma,p) reactions in the p-process path can be expected. These experiments will provide data to improve the nuclear parameters involved in the statistical model and thus reduce the uncertainties of nucleosynthesis calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا