ترغب بنشر مسار تعليمي؟ اضغط هنا

We report evidence for the existence of a supercurrent of magnons in a magnon Bose-Einstein condensate prepared in a room temperature yttrium-iron-garnet magnetic film and subject to a thermal gradient. The magnon condensate is formed in a parametric ally populated magnon gas, and its temporal evolution is studied by time-, frequency- and wavector-resolved Brillouin light scattering spectroscopy. It has been found that local heating in the focal point of a probing laser beam enhances the temporal decrease in the density of the freely evolving magnon condensate after the termination of the pumping pulse, but it does not alter the relaxation dynamics of the gaseous magnon phase. This phenomenon is understood as the appearance of a magnon supercurrent within the condensate due to a temperature- and, consequently, magnetisation-gradient induced phase gradient in the condensate wave function.
We study spin-wave transport in a microstructured Ni81Fe19 waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n=1,3,... into a mixe d set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripes width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا