ترغب بنشر مسار تعليمي؟ اضغط هنا

126 - Peter Barnes 2015
We report new imaging polarimetry observations of the Galactic compact HII region K3-50 using CanariCam at the Gran Telescopio Canarias. We use a standard polarimetric analysis technique, first outlined by Aitken, to decompose the observed polarisati on images centred at 8.7, 10.3, and 12.5 $mu$m into the emissive and absorptive components from silicate grains that are aligned with the local magnetic field. These components reveal the spatially-resolved magnetic field structures across the mid-infrared emission area of K3-50. We examine these structures and show that they are consistent with previously observed features and physical models of K3-50, such as the molecular torus and the ionised outflow. We propose a 3D geometry for all the structures seen at different wavelengths. We also compute relevant physical quantities in order to estimate the associated magnetic field strengths that would be implied under various physical assumptions. We compare these results with MHD simulations of protostar formation that predict the magnetic field strength and configuration. We find that the magnetic field may be dynamically important in the innermost 0.2 pc of the molecular torus, but that the torus is more likely to be rotationally-supported against gravity outside this radius. Similarly, magnetic fields are unlikely to dominate the {em global} physics of the ionised outflow, but they may be important in helping confine the flow near the cavity wall in some locations. Ours is the first application of the Aitken technique to spatially-resolved magnetic field structures in multiple layers along the line of sight, effectively a method of polarisation tomography.
117 - Peter J. Barnes 2011
The Census of High- and Medium-mass Protostars (CHaMP) is the first large-scale, unbiased, uniform mapping survey at sub-parsec scale resolution of 90 GHz line emission from massive molecular clumps in the Milky Way. We present the first Mopra (ATNF) maps of the CHaMP survey region (300{deg}>l>280{deg}) in the HCO+ J=1-0 line, which is usually thought to trace gas at densities up to 10^11 m-3. In this paper we introduce the survey and its strategy, describe the observational and data reduction procedures, and give a complete catalogue of moment maps of the HCO+ J=1-0 emission from the ensemble of 301 massive molecular clumps. From these maps we also derive the physical parameters of the clumps, using standard molecular spectral-line analysis techniques. This analysis yields the following range of properties: integrated line intensity 1-30 K km s-1, peak line brightness 1-7 K, linewidth 1-10 km s-1, integrated line luminosity 0.5-200 K km s-1 pc^2, FWHM size 0.2-2.5 pc, mean projected axial ratio 2, optical depth 0.08-2, total surface density 30-3000 M{sun} pc-2, number density 0.2-30 x 10^9 m-3, mass 15-8000 M{sun}, virial parameter 1-55, and total gas pressure 0.3-700 pPa. We find that the CHaMP clumps do not obey a Larson-type size-linewidth relation. Among the clumps, there exists a large population of subthermally excited, weakly-emitting (but easily detectable) dense molecular clumps, confirming the prediction of Narayanan et al. (2008). These weakly-emitting clumps comprise 95% of all massive clumps by number, and 87% of the molecular mass, in this portion of the Galaxy; their properties are distinct from the brighter massive star-forming regions that are more typically studied. If the clumps evolve by slow contraction, the 95% of fainter clumps may represent a long-lived stage of pressure-confined, gravitationally stable massive clump evolution, while the CHaMP ... (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا