ترغب بنشر مسار تعليمي؟ اضغط هنا

197 - Pere Blay , Victor Reglero 2011
The X-ray binary system 4U 2206+54 hides many mysteries. Among them, the surprising behavior of both of its components: the O9.5 dwarf star BD+53$^circ$2790 and a slowly rotating neutron star. BD+53$^circ$2790 misled the astronomers showing itself ve ry likely as a Be star. However, a deeper spectral analysis and more intense monitoring, revealed that the real picture was a bit more complicated: a) Although it shows evidence of a circumstellar envelope, its observable properties differ from those typical envelopes in Be stars. b) Comparison with spectral standards and models indicates a possible over-abundance in He. This would open the possibility to link the behavior of BD+53$^circ$2790 to the He-rich class of stars. c) UV spectra shows an abnormally slow and dense wind for an O9.5V star. d) Spectral classification in the IR wavelength region suggest a more likely supergiant nature of the source, in contradiction with the optical classification. e) The presence of an intense magnetic field is under investigation. BD+53$^circ$2790 stands as a perfect laboratory for testing stellar structure, as well as wind and evolutionary theories. The observable properties of this source in a wide range of spectral bands are discussed, and some interpretations outlined.
428 - P. Blay , M. Ribo , I. Negueruela 2008
BD+53 2790, an O9.5Vp star, is the optical counterpart to the HMXRB 4U 2206+54. This system was classified initially as a BeX, but observational evidence soon stressed the need to revise this classification. The permanent asymmetry in the H-alpha lin e profiles (in contrast with the cyclic variations shown by Be stars), the variations in the profile of this line in time scales of hours (while time scales from weeks to months are expected in Be stars), and the lack of correlation between IR observables and H-alpha line parameters, strongly suggest that, while BD+53 2790 contains a circunstellar disc, it is not like the one present in Be stars. Furthermore, there is evidence of overabundance of He in BD+53 2790. Together with the presence of an anomalous wind, found through UV spectroscopy, the possibility to link this star with the group of He rich stars is open. We will discuss the work done with IUE data from BD+53 2790 and the unexpected finding of a slow and dense wind, very rare for an O9.5V star.
In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short an d bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds.Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1-200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا