ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the effects of neutrino and electron mixing with exotic heavy leptons in the process e^+e^-to W^+W^- within E_6 models. We examine the possibility of uniquely distinguishing and identifying such effects of heavy neutral lepton exchange fro m Z-Z mixing within the same class of models and also from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to very similar experimental signatures at the e^+e^- International Linear Collider (ILC) for sqrt{s}=350, 500 GeV and 1 TeV. Such clear identification of the model is possible by using a certain double polarization asymmetry. The availability of both beams being polarized plays a crucial role in identifying such exotic-lepton admixture. In addition, the sensitivity of the ILC for probing exotic-lepton admixture is substantially enhanced when the polarization of the produced W^pm bosons is considered.
New heavy neutral gauge bosons Z are predicted by many models of physics beyond the Standard Model. It is quite possible that Zs are heavy enough to lie beyond the discovery reach of the CERN Large Hadron Collider LHC, in which case only indirect sig natures of Z exchanges may emerge at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We discuss in this context the foreseeable sensitivity to Zs of W^pm-pair production cross sections at the e^+e^- International Linear Collider (ILC), especially as regards the potential of distinguishing observable effects of the Z from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to the same or similar new physics experimental signatures at the ILC. The sensitivity of the ILC for probing the Z-Z mixing and its capability to distinguish these two new physics scenarios is substantially enhanced when the polarization of the initial beams and the produced W^pm bosons are considered. A model independent analysis of the Z effects in the process e^+e^- to W^+W^- allows to differentiate the full class of vector Z models from those with anomalous trilinear gauge couplings, with one notable exception: the sequential SM (SSM)-like models can in this process not be distinguished from anomalous gauge couplings. Results of model dependent analysis of a specific Z are expressed in terms of discovery and identification reaches on the Z-Z mixing angle and the Z mass.
135 - Per Osland 2008
We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrization s. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا