ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear optimization problems are investigated whose parameters are uncertain. We apply coherent distortion risk measures to capture the possible violation of a restriction. Each risk constraint induces an uncertainty set of coefficients, which is sho wn to be a weighted-mean trimmed region. Given an external sample of the coefficients, an uncertainty set is a convex polytope that can be exactly calculated. We construct an efficient geometrical algorithm to solve stochastic linear programs that have a single distortion risk constraint. The algorithm is available as an R-package. Also the algorithms asymptotic behavior is investigated, when the sample is i.i.d. from a general probability distribution. Finally, we present some computational experience.
A new procedure, called DDa-procedure, is developed to solve the problem of classifying d-dimensional objects into q >= 2 classes. The procedure is completely nonparametric; it uses q-dimensional depth plots and a very efficient algorithm for discrim ination analysis in the depth space [0,1]^q. Specifically, the depth is the zonoid depth, and the algorithm is the alpha-procedure. In case of more than two classes several binary classifications are performed and a majority rule is applied. Special treatments are discussed for outsiders, that is, data having zero depth vector. The DDa-classifier is applied to simulated as well as real data, and the results are compared with those of similar procedures that have been recently proposed. In most cases the new procedure has comparable error rates, but is much faster than other classification approaches, including the SVM.
196 - Karl Mosler 2012
In 1975 John Tukey proposed a multivariate median which is the deepest point in a given data cloud in R^d. Later, in measuring the depth of an arbitrary point z with respect to the data, David Donoho and Miriam Gasko considered hyperplanes through z and determined its depth by the smallest portion of data that are separated by such a hyperplane. Since then, these ideas has proved extremely fruitful. A rich statistical methodology has developed that is based on data depth and, more general, nonparametric depth statistics. General notions of data depth have been introduced as well as many special ones. These notions vary regarding their computability and robustness and their sensitivity to reflect asymmetric shapes of the data. According to their different properties they fit to particular applications. The upper level sets of a depth statistic provide a family of set-valued statistics, named depth-trimmed or central regions. They describe the distribution regarding its location, scale and shape. The most central region serves as a median. The notion of depth has been extended from data clouds, that is empirical distributions, to general probability distributions on R^d, thus allowing for laws of large numbers and consistency results. It has also been extended from d-variate data to data in functional spaces.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا