ترغب بنشر مسار تعليمي؟ اضغط هنا

189 - Paul W. Y. Lee 2015
We prove matrix and scalar differential Harnack inequalities for linear parabolic equations on Riemannian and Kahler manifolds.
216 - Paul W.Y. Lee 2014
Measure contraction properties $MCP(K,N)$ are synthetic Ricci curvature lower bounds for metric measure spaces which do not necessarily have smooth structures. It is known that if a Riemannian manifold has dimension $N$, then $MCP(K,N)$ is equivalent to Ricci curvature bounded below by $K$. On the other hand, it was observed in cite{Ri} that there is a family of left invariant metrics on the three dimensional Heisenberg group for which the Ricci curvature is not bounded below. Though this family of metric spaces equipped with the Harr measure satisfy $MCP(0,5)$. In this paper, we give sufficient conditions for a $2n+1$ dimensional weakly Sasakian manifold to satisfy $MCP(0,2n+3)$. This extends the above mentioned result on the Heisenberg group in cite{Ri}.
165 - Paul W.Y. Lee 2014
In this paper, we prove that the Jordan-Kinderlehrer-Otto scheme for a family of linear parabolic equations on the flat torus converges uniformly in space.
76 - Paul W.Y. Lee 2014
We give proofs of QR factorization, Choleskys factorization, and LDU factorization using the inverse function theorem. As a consequence, we obtain analytic dependence of these matrix factorizations which does not follow immediately using Gaussian elimination.
336 - Paul W.Y. Lee 2013
We prove a version of differential Harnack inequality for a family of sub-elliptic diffusions on Sasakian manifolds under certain curvature conditions.
506 - Paul W.Y. Lee 2012
Assume that a Hamiltonian system is monotone. In this paper, we give several characterizations on when such a system is Anosov. Assuming that a monotone Hamiltonian system has no conjugate point, we show that there are two distributions which are inv ariant under the Hamiltonian flow. We show that a monotone Hamiltonian flow without conjugate point is Anosov if and only if these distributions are transversal. We also show that if the reduced curvature of the Hamiltonian system is non-positive, then the flow is Anosov if and only if the reduced curvature is negative somewhere along each trajectory.
80 - Paul Woon Yin Lee 2011
In this paper, we introduce two notions on a surface in a contact manifold. The first one is called degree of transversality (DOT) which measures the transversality between the tangent spaces of a surface and the contact planes. The second quantity, called curvature of transversality (COT), is designed to give a comparison principle for DOT along characteristic curves under bounds on COT. In particular, this gives estimates on lengths of characteristic curves assuming COT is bounded below by a positive constant. We show that surfaces with constant COT exist and we classify all graphs in the Heisenberg group with vanishing COT. This is accomplished by showing that the equation for graphs with zero COT can be decomposed into two first order PDEs, one of which is the backward invisicid Burgers equation. Finally we show that the p-minimal graph equation in the Heisenberg group also has such a decomposition. Moreover, we can use this decomposition to write down an explicit formula of a solution near a regular point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا