ترغب بنشر مسار تعليمي؟ اضغط هنا

The CAMEA ESS neutron spectrometer is designed to achieve a high detection efficiency in the horizontal scattering plane, and to maximize the use of the long pulse European Spallation Source. It is an indirect geometry time-of-flight spectrometer tha t uses crystal analysers to determine the final energy of neutrons scattered from the sample. Unlike other indirect gemeotry spectrometers CAMEA will use ten concentric arcs of analysers to analyse scattered neutrons at ten different final energies, which can be increased to 30 final energies by use of prismatic analysis. In this report we will outline the CAMEA instrument concept, the large performance gain, and the potential scientific advancements that can be made with this instrument.
The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4) x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive asymmetry in the magnetic excitations above 40 meV was observed for both doping levels, but an additional ferromagnetic mode was observed in x = 0.45 and not in the x = 0.4. We discuss the origin of crossover in the excitation spectrum between x = 0.45 and x = 0.4 with respect to discommensurations in the charge stripe structure.
The magnetic excitations of charge-stripe ordered La2NiO4.11 where investigated using polarized- and unpolarized-neutron scattering to determine the magnetic excitations of the charge stripe electrons. We observed a magnetic excitation mode consisten t with the gapped quasi-one-dimensional antiferromagnetic correlations of the charge stripe electrons previously observed in La(2-x)Sr(x)NiO(4) x = 1/3 and x = 0.275.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا