ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of a CMOS test sensor which has been designed, fabricated and characterised to investigate the parameters required for a binary readout electromagnetic calorimeter. The sensors were fabricated with several enhancements in addition to standard CMOS processing. Detailed simulations and experimental results of the performance of the sensor are presented. The sensor and pixels are shown to behave in accordance with expectations and the processing enhancements are found to be essential to achieve the performance required.
In this paper we present a novel, quadruple well process developed in a modern 0.18mu CMOS technology called INMAPS. On top of the standard process, we have added a deep P implant that can be used to form a deep P-well and provide screening of N-well s from the P-doped epitaxial layer. This prevents the collection of radiation-induced charge by unrelated N-wells, typically ones where PMOS transistors are integrated. The design of a sensor specifically tailored to a particle physics experiment is presented, where each 50mu pixel has over 150 PMOS and NMOS transistors. The sensor has been fabricated in the INMAPS process and first experimental evidence of the effectiveness of this process on charge collection is presented, showing a significant improvement in efficiency.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا