ترغب بنشر مسار تعليمي؟ اضغط هنا

In many applications concerning the comparison of data expressed by $mathbb{R}^m$-valued functions defined on a topological space $X$, the invariance with respect to a given group $G$ of self-homeomorphisms of $X$ is required. While persistent homolo gy is quite efficient in the topological and qualitative comparison of this kind of data when the invariance group $G$ is the group $mathrm{Homeo}(X)$ of all self-homeomorphisms of $X$, this theory is not tailored to manage the case in which $G$ is a proper subgroup of $mathrm{Homeo}(X)$, and its invariance appears too general for several tasks. This paper proposes a way to adapt persistent homology in order to get invariance just with respect to a given group of self-homeomorphisms of $X$. The main idea consists in a dual approach, based on considering the set of all $G$-invariant non-expanding operators defined on the space of the admissible filtering functions on $X$. Some theoretical results concerning this approach are proven and two experiments are presented. An experiment illustrates the application of the proposed technique to compare 1D-signals, when the invariance is expressed by the group of affinities, the group of orientation-preserving affinities, the group of isometries, the group of translations and the identity group. Another experiment shows how our technique can be used for image comparison.
We consider generic curves in R^2, i.e. generic C^1 functions f from S^1 to R^2. We analyze these curves through the persistent homology groups of a filtration induced on S^1 by f. In particular, we consider the question whether these persistent homo logy groups uniquely characterize f, at least up to re-parameterizations of S^1. We give a partially positive answer to this question. More precisely, we prove that f=goh, where h:S^1-> S^1 is a C^1-diffeomorphism, if and only if the persistent homology groups of sof and sog coincide, for every s belonging to the group Sigma_2 generated by reflections in the coordinate axes. Moreover, for a smaller set of generic functions, we show that f and g are close to each other in the max-norm (up to re-parameterizations) if and only if, for every s belonging to Sigma_2, the persistent Betti numbers functions of sof and sog are close to each other, with respect to a suitable distance.
131 - Patrizio Frosini 2010
The present lack of a stable method to compare persistent homology groups with torsion is a relevant problem in current research about Persistent Homology and its applications in Pattern Recognition. In this paper we introduce a pseudo-distance d_T t hat represents a possible solution to this problem. Indeed, d_T is a pseudo-distance between multidimensional persistent homology groups with coefficients in an Abelian group, hence possibly having torsion. Our main theorem proves the stability of the new pseudo-distance with respect to the change of the filtering function, expressed both with respect to the max-norm and to the natural pseudo-distance between topological spaces endowed with vector-valued filtering functions. Furthermore, we prove a result showing the relationship between d_T and the matching distance in the 1-dimensional case, when the homology coefficients are taken in a field and hence the comparison can be made.
The Hausdorff distance, the Gromov-Hausdorff, the Frechet and the natural pseudo-distances are instances of dissimilarity measures widely used in shape comparison. We show that they share the property of being defined as $inf_rho F(rho)$ where $F$ is a suitable functional and $rho$ varies in a set of correspondences containing the set of homeomorphisms. Our main result states that the set of homeomorphisms cannot be enlarged to a metric space $mathcal{K}$, in such a way that the composition in $mathcal{K}$ (extending the composition of homeomorphisms) passes to the limit and, at the same time, $mathcal{K}$ is compact.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا