ترغب بنشر مسار تعليمي؟ اضغط هنا

The composition of the Sun is an essential piece of reference data for astronomy, cosmology, astroparticle, space and geo-physics. This article, dealing with the intermediate-mass elements Na to Ca, is the first in a series describing the comprehensi ve re-determination of the solar composition. In this series we severely scrutinise all ingredients of the analysis across all elements, to obtain the most accurate, homogeneous and reliable results possible. We employ a highly realistic 3D hydrodynamic solar photospheric model, which has successfully passed an arsenal of observational diagnostics. To quantify systematic errors, we repeat the analysis with three 1D hydrostatic model atmospheres (MARCS, MISS and Holweger & M{u}ller 1974) and a horizontally and temporally-averaged version of the 3D model ($langle$3D$rangle$). We account for departures from LTE wherever possible. We have scoured the literature for the best transition probabilities, partition functions, hyperfine and other data, and stringently checked all observed profiles for blends. Our final 3D+NLTE abundances are: $logepsilon_{mathrm{Na}}=6.21pm0.04$, $logepsilon_{mathrm{Mg}}=7.59pm0.04$, $logepsilon_{mathrm{Al}}=6.43pm0.04$, $logepsilon_{mathrm{Si}}=7.51pm0.03$, $logepsilon_{mathrm{P}}=5.41pm0.03$, $log epsilon_{mathrm{S}}=7.13pm0.03$, $logepsilon_{mathrm{K}}=5.04pm0.05$ and $logepsilon_{mathrm{Ca}}=6.32pm0.03$. The uncertainties include both statistical and systematic errors. Our results are systematically smaller than most previous ones with the 1D semi-empirical Holweger & Muller model. The $langle$3D$rangle$ model returns abundances very similar to the full 3D calculations. This analysis provides a complete description and a slight update of the Na to Ca results presented in Asplund, Grevesse, Sauval & Scott (arXiv:0909.0948), with full details of all lines and input data.
74 - P. Scott , C. Savage , J. Edsjo 2012
We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectra l information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا