ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing resistivity data of quasi-one dimensional superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 along the least conducting c*-axis and along the high conductivity a -axis as a function of temperature and pressure, a low temperature regime is obs erved in which a unique scattering time governs transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles DFT calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for rc a temperature dependence aT + bT^2. Taking into account the strong pressure dependence of the anisotropy, the T-linear rc is found to correlate with the suppression of the superconducting Tc, in close analogy with ra data. This work is revealing the domain of existence of the 3D coherent regime in the generic (TMTSF)_2X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors.
An exhaustive investigation of metallic electronic transport and superconductivity of organic superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 in the Pressure-Temperature phase diagram between T=0 and 20 K and a theoretical description based on the w eak coupling renormalization group method are reported. The analysis of the data reveals a high temperature domain (Tapprox 20 K) in which a regular T^2 electron-electron Umklapp scattering obeys a Kadowaki-Woods law and a low temperature regime (T< 8 K) where the resistivity is dominated by a linear-in temperature component. In both compounds a correlated behavior exists between the linear transport and the extra nuclear spin-lattice relaxation due to antiferromagnetic fluctuations. In addition, a tight connection is clearly established between linear transport and T_c. We propose a theoretical description of the anomalous resistivity based on a weak coupling renormalization group determination of electron-electron scattering rate. A linear resistivity is found and its origin lies in antiferromagnetic correlations sustained by Cooper pairing via constructive interference. The decay of the linear resistivity term under pressure is correlated with the strength of antiferromagnetic spin correlations and T_c, along with an unusual build-up of the Fermi liquid scattering. The results capture the key features of the low temperature electrical transport in the Bechgaard salts.
The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6 was recently measured at low temperature from the critical pressure needed to suppress the spin-density-wave state up to a pressure where superconductivity has almost disap peared. This data revealed a direct correlation between the onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low temperature, so that A goes to 0 as Tc goes to 0. Here we show that the contribution of low-frequency antiferromagnetic fluctuations to the spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term AT in the resistivity. These correlations suggest that anomalous scattering and pairing have a common origin, both rooted in the low-frequency antiferromagnetic fluctuations measured by NMR. A similar situation may also prevail in the recently-discovered iron-pnictide superconductors.
An investigation of the P/T phase diagram of the quarter-filled organic conductors, [EDT-TTF-CONMe2]2X, is reported on the basis of transport and NMR studies of two members, X=AsF6 and Br of the family. The strongly insulating character of these mate rials in the low pressure regime has been attributed to a remarkably stable charge ordered state confirmed by 13C NMR and the only existence of 1/4 Umklapp e-e scattering favoring a charge ordering instead of the 1D Mott localization seen in (TM)2X which are quarter-filled compounds with dimerization. A non magnetic insulating phase instead of the spin density wave state is stabilized in the deconfined regime of the phase diagram. This sequence of phases observed under pressure may be considered as a generic behavior for 1/4-filled conductors with correlations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا