ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - P. Fouque , D. Heyrovsky , S. Dong 2010
Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross ove r the source disk, which allows a determination of the angular size of the source and additionally a measurement of its limb darkening. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczynski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. In the case of microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification of about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darkening coefficients of the source in six photometric bands. The best-measured coefficients lead to an estimate of the source effective temperature of about 4700 +100-200 K. However, the photometric estimate from colour-magnitude diagrams favours a cooler temperature of 4200 +-100 K. As the limb-darkening measurements, at least in the CTIO/SMARTS2 V and I bands, are among the most accurate obtained, the above disagreement needs to be understood. A solution is proposed, which may apply to previous events where such a discrepancy also appeared.
The universality of the Cepheid Period-Luminosity relations has been under discussion since metallicity effects have been assumed to play a role in the value of the intercept and, more recently, of the slope of these relations. The goal of the presen t study is to calibrate the Galactic PL relations in various photometric bands (from B to K) and to compare the results to the well-established PL relations in the LMC. We use a set of 59 calibrating stars, the distances of which are measured using five different distance indicators: Hubble Space Telescope and revised Hipparcos parallaxes, infrared surface brightness and interferometric Baade-Wesselink parallaxes, and classical Zero-Age-Main-Sequence-fitting parallaxes for Cepheids belonging to open clusters or OB stars associations. A detailed discussion of absorption corrections and projection factor to be used is given. We find no significant difference in the slopes of the PL relations between LMC and our Galaxy. We conclude that the Cepheid PL relations have universal slopes in all photometric bands, not depending on the galaxy under study (at least for LMC and Milky Way). The possible zero-point variation with metal content is not discussed in the present work, but an upper limit of 18.50 for the LMC distance modulus can be deduced from our data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا