ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the non-classical photon statistics of single nitrogen-vacancy colour centres in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility, in some cases, to resolve in principle arbitrarily close emitting centers.
Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast cu stom-made pulse generator controlling an optical shutter (a LiNbO3 waveguide optical switch) on the output of the source. This source has a second-order autocorrelation g^{(2)}(0)=0.005(7), and an Output Noise Factor (defined as the ratio of the number of noise photons to total photons at the source output channel) of 0.25(1)%. These are the best performance characteristics reported to date.
In counterfactual QKD information is transfered, in a secure way, between Alice and Bob even when no particle carrying the information is in fact transmitted between them. In this letter we fully implement the scheme for counterfactual QKD proposed i n [T. Noh, PRL textbf{103}, 230501 (2009)], demonstrating for the first time that information can be transmitted between two parties without the transmission of a carrier.
The codification in higher dimensional Hilbert Spaces (whose logical basis states are dubbed qudits in analogy with bidimensional qubits) presents various advantages both for Quantum Information applications and for studies on Foundations of Quantum Mechanics. Purpose of this review is to introduce qudits, to summarize their application to Quantum Communication and researches on Local Realism and, finally, to describe some recent experiment for realizing them. A Little more in details: after a short introduction, we will consider the advantages of testing local realism with qudits, discussing both the 3-4 dimensional case (both for maximally and non-maximally entanglement) and then the extension to an arbitrary dimension. Afterwards, we will discuss the theoretical results on using qudits for quantum communication, epitomizing the outcomes on a larger security in Quantum Key Distribution protocols (again considering separately qutrits, ququats and generalization to arbitrary dimension). Finally, we will present the experiments performed up to now for producing quantum optical qudits and their applications. In particular, we will mention schemes based on interferometric set-ups, orbital angular momentum entanglement and biphoton polarization. Finally, we will summarize what hyperentanglement is and its applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا