ترغب بنشر مسار تعليمي؟ اضغط هنا

High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for su b-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected.
We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. T he mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as the manifestation of parametric amplification when rf current is small, and of parametric instability when rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.
The temperature dependence of a vortex-based nano-oscillator induced by spin transfer torque (STVO) in magnetic tunnel junctions (MTJ) is considered. We obtain emitted signals with large output power and good signal coherence. Due to the reduced non- linearities compared to the uniform magnetization case, we first observe a linear decrease of linewidth with decreasing temperature. However, this expected behavior no longer applies at lower temperature and a bottom limit of the linewidth is measured.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا