ترغب بنشر مسار تعليمي؟ اضغط هنا

The most striking feature of the Cosmic Star Formation History (CSFH) of the Universe is a dramatic drop of the star formation (SF) activity, since z~1. In this work we investigate if the very same process of assembly and growth of structures is one of the major drivers of the observed decline. We study the contribution to the CSFH of galaxies in halos of different masses. This is done by studying the total SFR-halo mass-redshift plane from redshift 0 to redshift z~1.6 in a sample of 57 groups and clusters by using the deepest available mid- and far-infrared surveys conducted with Spitzer MIPS and Herschel PACS and SPIRE. Our results show that low mass groups provide a 60-80% contribution to the CSFH at z~1. Such contribution declines faster than the CSFH in the last 8 billion years to less than 10% at z<0.3, where the overall SF activity is sustained by lower mass halos. More massive systems provide only a marginal contribution (<10%) at any epoch. A simplified abundance matching method shows that the large contribution of low mass groups at z~1 is due to a large fraction (>50%) of very massive, highly star forming Main Sequence galaxies. Below z~1 a quenching process must take place in massive halos to cause the observed faster suppression of their SF activity. Such process must be a slow one though, as most of the models implementing a rapid quenching of the SF activity in accreting satellites significantly underpredicts the observed SF level in massive halos at any redshift. Starvation or the transition from cold to hot accretion would provide a quenching timescale of 1 Gyrs more consistent with the observations. Our results suggest a scenario in which, due to the structure formation process, more and more galaxies experience the group environment and, thus, the associated quenching process. This leads to the progressive suppression of their SF activity shaping the CSFH below z~1.
There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed galaxy downsizing could be interpreted as a halo downsizing, whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a halo downsizing scenario and highlight the significant role of environment quenching in shaping the CSFH.
We investigate the effect of the high-pass filter data reduction technique on the Herschel PACS PSF and noise of the PACS maps at the 70, 100 and 160 um bands and in medium and fast scan speeds. This branch of the PACS Photometer pipeline is the most used for cosmological observations and for point-source observations.The calibration of the flux loss due to the median removal applied by the PACS pipeline (high-pass filter) is done via dedicated simulations obtained by polluting real PACS timelines with fake sources at different flux levels. The effect of the data reduction parameter settings on the final map noise is done by using selected observations of blank fields with high data redundancy. We show that the running median removal can cause significant flux losses at any flux level. We analyse the advantages and disadvantages of several masking strategies and suggest that a mask based on putting circular patches on prior positions is the best solution to reduce the amount of flux loss. We provide a calibration of the point-source flux loss for several masking strategies in a large range of data reduction parameters, and as a function of the source flux. We also show that, for stacking analysis, the impact of the high-pass filtering effect is to reduce significantly the clustering effect. The analysis of the global noise and noise components of the PACS maps shows that the dominant parameter in determining the final noise is the high-pass filter width. We also provide simple fitting functions to build the error map from the coverage map and to estimate the cross-correlation correction factor in a representative portion of the data reduction parameter space.
Star formation in massive galaxies is quenched at some point during hierarchical mass assembly. To understand where and when the quenching processes takes place, we study the evolution of the total star formation rate per unit total halo mass (Sigma( SFR/M)) in three different mass scales: low mass halos (field galaxies), groups, and clusters, up to a redshift ~1.6. We use deep far-infrared PACS data at 100 and 160 um to accurately estimate the total star formation rate of the Luminous Infrared Galaxy population of 9 clusters with mass ~10^{15} M_{odot}, and 9 groups/poor clusters with mass ~ 5 x 10^{13} M_{odot}. Estimates of the field Sigma(SFR/M) are derived from the literature, by dividing the star formation rate density by the mean comoving matter density of the universe. The field Sigma(SFR/M) increases with redshift up to z~1 and it is constant thereafter. The evolution of the Sigma(SFR/M)-z relation in galaxy systems is much faster than in the field. Up to redshift z~0.2, the field has a higher Sigma(SFR/M) than galaxy groups and galaxy clusters. At higher redshifts, galaxy groups and the field have similar Sigma(SFR/M), while massive clusters have significantly lower Sigma(SFR/M) than both groups and the field. There is a hint of a reversal of the SFR activity vs. environment at z~1.6, where the group Sigma(SFR/M) lies above the field Sigma(SFR/M)-z relation. We discuss possible interpretations of our results in terms of the processes of downsizing, and star-formation quenching.
We use deep 70, 100 and 160 um observations taken with PACS, the Photodetector Array Camera and Spectrometer on board of Herschel, as part of the PACS Evolutionary Probe (PEP) guaranteed time, to study the relation between star formation rate and env ironment at redshift ~ 1 in the GOODS-S and GOODS-N fields. We use the SDSS spectroscopic catalog to build the local analog and study the evolution of the star formation activity dependence on the environment. At z ~ 1 we observe a reversal of the relation between star formation rate and local density, confirming the results based on Spitzer 24 um data. However, due to the high accuracy provided by PACS in measuring the star formation rate also for AGN hosts, we identify in this class of objects the cause for the reversal of the density-SFR relation. Indeed, AGN hosts favor high stellar masses, dense regions and high star formation rates. Without the AGN contribution the relation flattens consistently with respect to the local analog in the same range of star formation rates. As in the local universe, the specific star formation rate anti-correlates with the density. This is due to mass segregation both at high and low redshift. The contribution of AGN hosts does not affect this anti-correlation, since AGN hosts exhibit the same specific star formation rate as star forming galaxies at the same mass. The same global trends and AGN contribution is observed once the relations are studied per morphological type. We study the specific star formation rate vs stellar mass relation in three density regimes. Our data provides an indication that at M/M_{odot} > 10^{11} the mean specific star formation rate tends to be higher at higher density, while the opposite trend is observed in the local SDSS star forming sample.
We present the first results of the VIsible Multiobject Spectrograph (VIMOS) ESO/GOODS program of spectroscopy of faint galaxies in the Chandra Deep Field South (CDF-S). The program complements the FORS2 ESO/GOODS campaign. 3312 spectra have been obt ained in service mode with VIMOS at the ESO/VLT UT3. The VIMOS LR-Blue and MR grisms have been used to cover different redshift ranges. Galaxies at 1.8 < z < 3.5 have been observed in the GOODS VIMOS-LR-Blue campaign. Galaxies at z < 1 and Lyman Break Galaxies at z > 3.5 have been observed in the VIMOS MR survey. Here we report results for the first 6 masks (out of 10 total) that have been analyzed from each of the LR-Blue and MR grisms. Spectra of 2344 spectra have been extracted from these 6 LR-Blue masks and 968 from 6 MR masks. 33% of the LR-Blue and 18% of the MR spectra are serendipitous observations. We obtained 1481 redshifts in the LR-Blue campaign and 656 in the MR campaign for a total success rate of 63% and 68%, respectively, which increase to 70% and 75% when only the primary targets are considered. By complementing our VIMOS spectroscopic catalog with all existing spectroscopic redshifts publicly available in the CDF-S, we created a redshift master catalog. By comparing this redshift compilation with different photometric redshift catalogs we estimate the completeness level of the CDF-S spectroscopic coverage in several redshift bins. The completeness level is very high, > 60%, at z < 3.5, and it is very uncertain at higher redshift. The master catalog has been used also to estimate completeness and contamination levels of different galaxy photometric selection techniques, such as the BzK, the so called sub-U-dropout and the drop-out methods and to identify large scale structures in the field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا