ترغب بنشر مسار تعليمي؟ اضغط هنا

Foreground contamination is the fundamental hindrance to the cosmic microwave background (CMB) signals and its separation from it represents a fundamental question in Cosmology. One of the most popular algorithm used to disentangle foregrounds from t he CMB signals is the internal linear combination method (ILC). In its original version, this technique is applied directly to the observed maps. In recent literature, however, it is suggested that in the harmonic (Fourier) domain it is possible to obtain better results since a separation can be attempted where the various Fourier frequencies are given different weights. This is seen as a useful characteristic in the case of noisy data. Here, we argue that the benefits of using such an approach are overestimated. Better results can be obtained if a classic procedure is adopted where data are filtered before the separation is carried out.
The effects of the in-flight behaviour of the bolometer arrays of the Herschel/PACS instrument under impacts of Galactic cosmic rays are explored. This instrument is part of the ESA-Herschel payload, which will be launched at the end of 2008 and will operate at the Lagrangian L2 point of the Sun-Earth system. We find that the components external to the detectors (the spacecraft, the cryostat, the PACS box, collectively referred to as the `shield) are the major source of secondary events affecting the detector behaviour. The impacts deposit energy on the bolometer chips and influence the behaviour of nearby pixels. 25% of hits affect the adjacent pixels. The energy deposited raises the bolometer temperature by a factor ranging from 1 to 6 percent of the nominal value. We discuss the effects on the observations and compare simulations with laboratory tests.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا