ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - Yangpan Zhang , Maozhi Xu 2021
As a research field of stream ciphers, the pursuit of a balance of security and practicality is the focus. The conditions for security usually have to satisfy at least high period and high linear complexity. Because the feedforward clock-controlled s tructure can provide quite a high period and utility, many sequence ciphers are constructed based on this structure. However, the past study of its linear complexity only works when the controlled sequence is an m-sequence. Using the theory of matrix over the ring and block matrix in this paper, we construct a more helpful method. It can estimate the lower bound of the linear complexity of the feedforward clock-controlled sequence. Even the controlled sequence has great linear complexity.
94 - Pan Zhang , Bo Zhang , Ting Zhang 2021
Recent semi-supervised learning (SSL) methods are commonly based on pseudo labeling. Since the SSL performance is greatly influenced by the quality of pseudo labels, mutual learning has been proposed to effectively suppress the noises in the pseudo s upervision. In this work, we propose robust mutual learning that improves the prior approach in two aspects. First, the vanilla mutual learners suffer from the coupling issue that models may converge to learn homogeneous knowledge. We resolve this issue by introducing mean teachers to generate mutual supervisions so that there is no direct interaction between the two students. We also show that strong data augmentations, model noises and heterogeneous network architectures are essential to alleviate the model coupling. Second, we notice that mutual learning fails to leverage the networks own ability for pseudo label refinement. Therefore, we introduce self-rectification that leverages the internal knowledge and explicitly rectifies the pseudo labels before the mutual teaching. Such self-rectification and mutual teaching collaboratively improve the pseudo label accuracy throughout the learning. The proposed robust mutual learning demonstrates state-of-the-art performance on semantic segmentation in low-data regime.
PageRank (PR) is a fundamental tool for assessing the relative importance of the nodes in a network. In this paper, we propose a measure, weighted PageRank (WPR), extended from the classical PR for weighted, directed networks with possible non-unifor m node-specific information that is dependent or independent of network structure. A tuning parameter leveraging node degree and strength is introduced. An efficient algorithm based on R program has been developed for computing WPR in large-scale networks. We have tested the proposed WPR on widely used simulated network models, and found it outperformed other competing measures in the literature. By applying the proposed WPR to the real network data generated from World Input-Output Tables, we have seen the results that are consistent with the global economic trends, which renders it a preferred measure in the analysis.
Grouping objects into clusters based on similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message passing algorithms and spectral algorithms proposed for unweighted commu nity detection problem, we develop a non-parametric method based on statistical physics, by mapping the problem to Potts model at the critical temperature of spin glass transition and applying belief propagation to solve the marginals corresponding to the Boltzmann distribution. Our algorithm is robust to over-fitting and gives a principled way to determine whether there are significant clusters in the data and how many clusters there are. We apply our method to different clustering tasks and use extensive numerical experiments to illustrate the advantage of our method over existing algorithms. In the community detection problem in weighted and directed networks, we show that our algorithm significantly outperforms existing algorithms. In the clustering problem when the data was generated by mixture models in the sparse regime we show that our method works to the theoretical limit of detectability and gives accuracy very close to that of the optimal Bayesian inference. In the semi-supervised clustering problem, our method only needs several labels to work perfectly in classic datasets. Finally, we further develop Thouless-Anderson-Palmer equations which reduce heavily the computation complexity in dense-networks but gives almost the same performance as belief propagation.
Two geometric inequalities are established for Einstein totally real submanifolds in a complex space form. As immediate applications of these inequalities, some non-existence results are obtained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا