ترغب بنشر مسار تعليمي؟ اضغط هنا

We address the question on how weak perturbations, that are quite ineffective in small many-body systems, can lead to decoherence and hence to irreversibility when they proliferate as the system size increases. This question is at the heart of solid state NMR. There, an initially local polarization spreads all over due to spin-spin interactions that conserve the total spin projection, leading to an equilibration of the polarization. In principle, this quantum dynamics can be reversed by changing the sign of the Hamiltonian. However, the reversal is usually perturbed by non reversible interactions that act as a decoherence source. The fraction of the local excitation recovered defines the Loschmidt echo (LE), here evaluated in a series of closed $N$ spin systems with all-to-all interactions. The most remarkable regime of the LE decay occurs when the perturbation induces proliferated effective interactions. We show that if this perturbation exceeds some lower bound, the decay is ruled by an effective Fermi golden rule (FGR). Such a lower bound shrinks as $ N $ increases, becoming the leading mechanism for LE decay in the thermodynamic limit. Once the polarization stayed equilibrated longer than the FGR time, it remains equilibrated in spite of the reversal procedure.
We consider semigroups ${alpha_t: ; tgeq 0}$ of normal, unital, completely positive maps $alpha_t$ on a von Neumann algebra ${mathcal M}$. The (predual) semigroup $ u_t (rho):= rho circ alpha_t$ on normal states $rho$ of $mathcal M$ leaves invariant the face ${mathcal F}_p:= {rho : ; rho (p)=1}$ supported by the projection $pin {mathcal M}$, if and only if $alpha_t(p)geq p$ (i.e., $p$ is sub-harmonic). We complete the arguments showing that the sub-harmonic projections form a complete lattice. We then consider $r_o$, the smallest projection which is larger than each support of a minimal invariant face; then $r_o$ is subharmonic. In finite dimensional cases $sup alpha_t(r_o)={bf 1}$ and $r_o$ is also the smallest projection $p$ for which $alpha_t(p)to {bf 1}$. If ${ u_t: ; tgeq 0}$ admits a faithful family of normal stationary states then $r_o={bf 1}$ is useless; if not, it helps to reduce the problem of the asymptotic behaviour of the semigroup for large times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا