ترغب بنشر مسار تعليمي؟ اضغط هنا

We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 micron image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant s hell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 micron emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lower -- a relic effect from an earlier epoch when the shock was encountering a lower density -- but higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM -- as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SN Ia remnants, SN 1006 shows no evidence for dust grain formation in the supernova ejecta.
We report the results of an X-ray proper motion measurement for the NW rim of SN1006, carried out by comparing Chandra observations from 2001 and 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN1006 with s ignificant optical emission: a thin, Balmer-dominated filament. For most of the NW rim, the proper motion is about 0.30 arcsec/yr, essentially the same as has been measured from the H-alpha filament. Isolated regions of the NW limb are dominated by nonthermal emission, and here the proper motion is much higher, 0.49 arcsec/yr, close to the value measured in X-rays along the much brighter NE limb, where the X-rays are overwhelmingly nonthermal. At the 2.2 kpc distance to SN1006, the proper motions imply shock velocities of about 3000 km/s and 5000 km/s in the thermal and nonthermal regions, respectively. A lower velocity behind the H-alpha filament is consistent with the picture that SN1006 is encountering denser gas in the NW, as is also suggested by its overall morphology. In the thermally-dominated portion of the X-ray shell, we also see an offset in the radial profiles at different energies; the 0.5-0.6 keV peak dominated by O VII is closer to the shock front than that of the 0.8-3 keV emission--due to the longer times for heavier elements to reach ionization states where they produce strong X-ray emission.
The Schweizer-Middleditch star, located behind the SN 1006 remnant and near its center in projection, provides the opportunity to study cold, expanding ejecta within the SN 1006 shell through UV absorption. Especially notable is an extremely sharp re d edge to the Si II 1260 Angstrom feature, which stems from the fastest moving ejecta on the far side of the SN 1006 shell--material that is just encountering the reverse shock. Comparing HST far-UV spectra obtained with COS in 2010 and with STIS in 1999, we have measured the change in this feature over the intervening 10.5-year baseline. We find that the sharp red edge of the Si II feature has shifted blueward by 0.19 +/- 0.05 Angstroms, which means that the material hitting the reverse shock in 2010 was moving slower by 44 +/- 11 km/s than the material that was hitting it in 1999, a change corresponding to - 4.2 +/- 1.0 km/s/yr. This is the first observational confirmation of a long-predicted dynamic effect for a reverse shock: that the shock will work its way inward through expanding supernova ejecta and encounter ever slower material as it proceeds. We also find that the column density of shocked Si II (material that has passed through the reverse shock) has decreased by 7 +/- 2% over the ten-year period. The decrease could indicate that in this direction the reverse shock has been ploughing through a dense clump of Si,leading to pressure and density transients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا