ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - Owe Philipsen 2021
For a long time, strong coupling expansions have not been applied systematically in lattice QCD thermodynamics, in view of the succes of numerical Monte Carlo studies. The persistent sign problem at finite baryo-chemical potential, however, has motiv ated investigations using these methods, either by themselves or combined with numerical evaluations, as a route to finite density physics. This article reviews the strategies, by which a number of qualitative insights have been attained, notably the emergence of the hadron resonance gas or the identification of the onset transition to baryon matter in specific regions of the QCD parameter space. For the simpler case of Yang-Mills theory, the deconfinement transition can be determined quantitatively even in the scaling region, showing possible prospects for continuum physics.
After combined character and hopping expansions and integration over the spatial gauge links, lattice QCD reduces to a three-dimensional $SU(3)$ Polyakov loop model with complicated interactions. A simple truncation of the effective theory is valid f or heavy quarks on reasonably fine lattices and can be solved by linked cluster expansion in its effective couplings. This was used ealier to demonstrate the onset transition to baryon matter in the cold and dense regime. Repeating these studies for general $N_c$, one finds that for large $N_c$ the onset transition becomes first-order, and the pressure scales as $psim N_c$ through three consecutive orders in the hoppoing expansion. These features are consistent with the formal definition of quarkyonic matter given in the literature. We discuss the implications for $N_c=3$ and physical QCD.
136 - Owe Philipsen 2019
Neither the chiral limit nor finite baryon density can be simulated directly in lattice QCD, which severely limits our understanding of the QCD phase diagram. In this review I collect results for the phase structure in an extended parameter space of QCD, with varying numbers of flavours, quark masses, colours, lattice spacings, imaginary and isospin chemical potentials. Such studies help in understanding the underlying symmetries and degrees of freedom, and are beginning to provide a consistent picture constraining the possibilities for the physical phase diagram.
Lattice QCD with heavy quarks reduces to a three-dimensional effective theory of Polyakov loops, which is amenable to series expansion methods. We analyse the effective theory in the cold and dense regime for a general number of colours, $N_c$. In pa rticular, we investigate the transition from a hadron gas to baryon condensation. For any finite lattice spacing, we find the transition to become stronger, i.e. ultimately first-order, as $N_c$ is made large. Moreover, in the baryon condensed regime, we find the pressure to scale as $psim N_c$ through three orders in the hopping expansion. Such a phase differs from a hadron gas with $psim N_c^0$, or a quark gluon plasma, $psim N_c^2$, and was termed quarkyonic in the literature, since it shows both baryon-like and quark-like aspects. A lattice filling with baryon number shows a rapid and smooth transition from condensing baryons to a crystal of saturated quark matter, due to the Pauli principle, and is consistent with this picture. For continuum physics, the continuum limit needs to be taken before the large $N_c$ limit, which is not yet possible in practice. However, in the controlled range of lattice spacings and $N_c$-values, our results are stable when the limits are approached in this order. We discuss possible implications for physical QCD.
During the last years it has become possible to address the cold and dense regime of QCD directly for sufficiently heavy quarks, where combined strong coupling and hopping expansions are convergent and a 3d effective theory can be derived, which allo ws to control the sign problem either in simulations or by fully analytic calculations. In this contribution we review the effective theory and study the $N_c$-dependence of the nuclear liquid gas transition, as well as the equation of state of baryonic matter in the strong coupling limit. We find the transition to become more strongly first order with growing $N_c$, suggesting that in the large $N_c$ limit its critical endpoint moves to high temperatures to connect with the deconfinement transition. Furthermore, to leading and next-to-leading order in the strong coupling and hopping expansions, respectively, the pressure is found to scale as $psim N_c$. This suggests that baryonic and quarkyonic matter might be the same at nuclear densities. Further work is needed to see whether this result is stable under gauge corrections.
The non-equilibrium early time evolution of an ultra-relativistic heavy ion collision is often described by classical lattice Yang-Mills theory, starting from the colour glass condensate (CGC) effective theory with an anisotropic energy momentum tens or as initial condition. In this work we investigate the systematics associated with such studies and their dependence on various model parameters (IR, UV cutoffs and the amplitude of quantum fluctuations) which are not yet fixed by experiment. We perform calculations for SU(2) and SU(3), both in a static box and in an expanding geometry. Generally, the dependence on model parameters is found to be much larger than that on technical parameters like the number of colours, boundary conditions or the lattice spacing. In a static box, all setups lead to isotropisation through chromo-Weibel instabilities, which is illustrated by the accompanying filamentation of the energy density. However, the associated time scale depends strongly on the model parameters and in all cases is longer than the phenomenologically expected one. In the expanding system, no isotropisation is observed for any parameter choice. We show how investigations at fixed initial energy density can be used to better constrain some of the model parameters.
154 - Owe Philipsen 2016
The properties of matter at finite baryon densities play an important role for the astrophysics of compact stars as well as for heavy ion collisions or the description of nuclear matter. Because of the sign problem of the quark determinant, lattice Q CD cannot be simulated by standard Monte Carlo at finite baryon densities. I review alternative attempts to treat dense QCD with an effective lattice theory derived by analytic strong coupling and hopping expansions, which close to the continuum is valid for heavy quarks only, but shows all qualitative features of nuclear physics emerging from QCD. In particular, the nuclear liquid gas transition and an equation of state for baryons can be calculated directly from QCD. A second effective theory based on strong coupling methods permits studies of the phase diagram in the chiral limit on coarse lattices.
The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order ha s important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse $N_t=4$ lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass $m_pi^capprox 560$ MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavour QCD using improved Wilson fermions and indicate that the systematic error on the two-flavour chiral transition is still of order 100%.
The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the t wo scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.
A three-dimensional effective lattice theory of Polyakov loops is derived from QCD by expansions in the fundamental character of the gauge action, u, and the hopping parameter, kappa, whose action is correct to kappa^n u^m with n+m=4. At finite baryo n density, the effective theory has a sign problem which meets all criteria to be simulated by complex Langevin as well as by Monte Carlo on small volumes. The theory is valid for the thermodynamics of heavy quarks, where its predictions agree with simulations of full QCD at zero and imaginary chemical potential. In its region of convergence, it is moreover amenable to perturbative calculations in the small effective couplings. In this work we study the challenging cold and dense regime. We find unambiguous evidence for the nuclear liquid gas transition once the baryon chemical potential approaches the baryon mass, and calculate the nuclear equation of state. In particular, we find a negative binding energy per nucleon causing the condensation, whose absolute value decreases exponentially as mesons get heavier. For decreasing meson mass, we observe a first order liquid gas transition with an endpoint at some finite temperature, as well as gap between the onset of isospin and baryon condensation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا