ترغب بنشر مسار تعليمي؟ اضغط هنا

Band calculations for Ce compounds with the AuCu$_{3}$-type crystal structure were carried out on the basis of dynamical mean field theory (DMFT). The results of applying the calculation to CeIn$_{3}$ and CeSn$_{3}$ are presented as the second in a s eries of papers. The Kondo temperature and crystal-field splitting are obtained, respectively, as 190 and 390 K (CeSn$_{3}$), 8 and 160 K (CeIn$_{3}$ under ambient pressure), and 30 and 240 K (CeIn$_{3}$ at a pressure of 2.75 GPa). Experimental results for the photoemission spectrum are reasonably well reproduced. In CeSn$_{3}$, a Fermi surface (FS) structure similar to that obtained by a refined calculation based on the local density approximation (LDA) is obtained. In CeIn$_{3}$, the topology of the FS structure is different from that obtained by the LDA calculation but seems to be consistent with the results of de Haas-van Alphen experiments. Cyclotron mass of the correct magnitude is obtained in both compounds. The experimental result for the angular correlation of the electron-positron annihilation radiation is reasonably well reproduced on the basis of the itinerant 4f picture. A band calculation for CeIn$_{3}$ in the antiferromagnetic state was carried out, and it was shown that the occupied 4f state should have a very shallow level.
40 - Osamu Sakai 2010
Band calculations for Ce compounds with the AuCu$_{3}$-type crystal structure were carried out on the basis of dynamical mean field theory (DMFT). The auxiliary impurity problem was solved by a method named NCA$f^{2}$vc (noncrossing approximation inc luding the $f^{2}$ state as a vertex correction). The calculations take into account the crystal-field splitting, the spin-orbit interaction, and the correct exchange process of the $f^{1} rightarrow f^{0},f^{2}$ virtual excitation. These are necessary features in the quantitative band theory for Ce compounds and in the calculation of their excitation spectra. The results of applying the calculation to CePd$_{3}$ and CeRh$_{3}$ are presented as the first in a series of papers. The experimental results of the photoemission spectrum (PES), the inverse PES, the angle-resolved PES, and the magnetic excitation spectra were reasonably reproduced by the first-principles DMFT band calculation. At low temperatures, the Fermi surface (FS) structure of CePd$_{3}$ is similar to that of the band obtained by the local density approximation. It gradually changes into a form that is similar to the FS of LaPd$_{3}$ as the temperature increases, since the $4f$ band shifts to the high-energy side and the lifetime broadening becomes large.}
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا