ترغب بنشر مسار تعليمي؟ اضغط هنا

We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Lambda-type level structure is introduced a nd compared to recent experimental data. We show that images with feature size as low as 10 micrometers can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.
Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in vapor while maintaining their coherence. Recent theoretical and experimental studies on the effect of coherent diffusion on key Raman processes, namely Ra man spectroscopy, slow polariton propagation, and stored light, are reviewed in this Colloquium.
We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to tran sfer of coherence via spontaneous emission from the excited to ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusion-like equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.
Self-similar solutions of the coherent diffusion equation are derived and measured. The set of real similarity solutions is generalized by the introduction of a nonuniform phase surface, based on the elegant Gaussian modes of optical diffraction. In an experiment of light storage in a gas of diffusing atoms, a complex initial condition is imprinted, and its diffusion dynamics is monitored. The self-similarity of both the amplitude and the phase pattern is demonstrated, and an algebraic decay associated with the mode order is measured. Notably, as opposed to a regular diffusion spreading, a self-similar contraction of a special subset of the solutions is predicted and observed.
We experimentally demonstrate an optical pumping technique to pump a dilute rubidium vapor into the mF = 0 ground states. The technique utilizes selection rules that forbid the excitation of the mF = 0 state by linearly-polarized light. A substantial increase in the transparency contrast of coherent population trapping in the clock transition is demonstrated.
We experimentally demonstrate the manipulation of optical diffraction, utilizing the atomic thermal motion in a hot vapor medium of electromagnetically-induced transparency (EIT). By properly tuning the EIT parameters, the refraction induced by the a tomic motion may completely counterbalance the paraxial free-space diffraction and by that eliminates the effect of diffraction for arbitrary images. By further manipulation, the diffraction can be doubled, biased asymmetrically to induced deflection, or even reversed. The latter allows an experimental implementation of an analogy to a negative-index lens.
We present a scheme for eliminating the optical diffraction of slow-light in a thermal atomic medium of electromagnetically induced transparency. Nondiffraction is achieved for an arbitrary paraxial image by manipulating the susceptibility in momentu m space, in contrast to the common approach, which employs guidance of specific modes by manipulating the susceptibility in real space. For negative two-photon detuning, the moving atoms drag the transverse momentum components unequally, resulting in a Doppler trapping of light by atoms in two dimensions.
We present a theoretical model for electromagnetically induced transparency (EIT) in vapor, that incorporates atomic motion and velocity-changing collisions into the dynamics of the density-matrix distribution. Within a unified formalism we demonstra te various motional effects, known for EIT in vapor: Doppler-broadening of the absorption spectrum; Dicke-narrowing and time-of-flight broadening of the transmission window for a finite-sized probe; Diffusion of atomic coherence during storage of light and diffusion of the light-matter excitation during slow-light propagation; and Ramsey-narrowing of the spectrum for a probe and pump beams of finite-size.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا