ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of a single static impurity on the many-body states and on the spin and thermal transport in the one-dimensional anisotropic Heisenberg chain at finite temperatures is studied. Whereas the pure Heisenberg model reveals Poisson level statis tics and dissipationless transport due to integrability, we show using the numerical approach that a single impurity induces Wigner-Dyson level statistics and at high enough temperature incoherent transport within the chain, whereby the relaxation time and d.c. conductivity scale linearly with length.
Atomic repulsion $U_d$ on the Cu site in high T$_c$ cuprates is large but, surprisingly, some important properties are consistent with moderate couplings. The time dependent perturbation theory with slave particles is therefore formulated in the $U_d toinfty$ limit for the metallic phase in the physically relevant regime of the three-band Emery model. The basic theory possesses the local gauge invariance asymptotically but its convergence is fast when the average occupation of the Cu-site is small. The leading orders exhibit the band narrowing and the dynamic Cu/O$_2$ charge transfer disorder. The effective local repulsion between particles on oxygen sites is shown to be moderate in the physical regime under consideration. It enhances the coherent incommensurate SDW correlations. The latter compete with the Cu/O$_2$ charge transfer disorder, in agreement with basic observations in high T$_c$ cuprates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا