ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perh aps the most popular example. Over the last few years, the theoretical understanding of magnetic reconnection in large-scale fluid systems has undergone a major paradigm shift. The steady-state model of reconnection described by the famous Sweet-Parker (SP) theory, which dominated the field for ~50 years, has been replaced with an essentially time-dependent, bursty picture of the reconnection layer, dominated by the continuous formation and ejection of multiple secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be slow, a major implication of this new paradigm is that reconnection in fluid systems is fast (i.e., independent of the Lundquist number), provided that the system is large enough. This conceptual shift hinges on the realization that SP-like current layers are violently unstable to the plasmoid instability - implying, therefore, that such current sheets are super-critically unstable and thus can never form in the first place. This suggests that the formation of a current sheet and the subsequent reconnection process cannot be decoupled, as is commonly assumed. This paper provides an introductory-level overview of the recent developments in reconnection theory and simulations that led to this essentially new framework. We briefly discuss the role played by the plasmoid instability in selected applications, and describe some of the outstanding challenges that remain at the frontier of this subject. Amongst these are the analytical and numerical extension of the plasmoid instability to (i) 3D and (ii) non-MHD regimes. New results are reported in both cases.
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.
Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated using a novel fluid-kinetic model [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains non-isothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is $cE_{max}approx 0.2v_AB_{y,0}$, where $v_A$ is the Alfven speed based on the reconnecting field $B_{y,0}$. The island saturation width is the same as in MHD models except for small systems, when it becomes comparable to the kinetic scales.
A 2D linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of Reduced MHD. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The p lasmoid instability [Loureiro et al, Phys. Plasmas {bf 14}, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids ($k_{rm max}Lsheet sim S^{3/8}$, where $k_{rm max}$ is the wave-number of fastest growing mode, $S=Lsheet V_A/eta$ is the Lundquist number, $Lsheet$ is the length of the sheet, $V_A$ is the Alfven speed and $eta$ is the plasma resistivity), which grows super-Alfvenically fast ($gmaxtau_Asim S^{1/4}$, where $gmax$ is the maximum growth rate, and $tau_A=Lsheet/V_A$). For typical background profiles, the growth rate and the wave-number are found to {it increase} in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfven speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability, $gmax tau_A sim k_{rm max} Lsheetsim S^{1/2}$. The effect of viscosity ($ u$) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers, $Pm= u/eta$, it is found that $gmaxsim S^{1/4}Pm^{-5/8}$ and $k_{rm max} Lsheetsim S^{3/8}Pm^{-3/16}$, leading to the prediction that the critical Lundquist number for plasmoid instability in the $Pmgg1$ regime is $Scritsim 10^4Pm^{1/2}$. These results are verified via direct numerical simulation of the linearized equations, using a new, analytical 2D SP equilibrium solution.
A numerical study of magnetic reconnection in the large-Lundquist-number ($S$), plasmoid-dominated regime is carried out for $S$ up to $10^7$. The theoretical model of Uzdensky {it et al.} [Phys. Rev. Lett. {bf 105}, 235002 (2010)] is confirmed and p artially amended. The normalized reconnection rate is $ ormEeffsim 0.02$ independently of $S$ for $Sgg10^4$. The plasmoid flux ($Psi$) and half-width ($w_x$) distribution functions scale as $f(Psi)sim Psi^{-2}$ and $f(w_x)sim w_x^{-2}$. The joint distribution of $Psi$ and $w_x$ shows that plasmoids populate a triangular region $w_xgtrsimPsi/B_0$, where $B_0$ is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic monster plasmoids with $w_xsim 10$% of the system size are shown to emerge in just a few Alfven times, independently of $S$, suggesting that large disruptive events are an inevitable feature of large-$S$ reconnection.
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures, and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا