ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the quark-hadron phase transition with the finite-size effects in neutron stars. The finite-size effects should be, generally, taken into account in the phase transition of multi-component system. The behavior of the phase transition, howeve r, strongly depends on the models for quark and hadron matter, surface tension, neutrino fraction, and temperature. We find that, if the surface tension is strong, the EOS becomes similar to the case of a Maxwell construction for any hadron and/or quark model, though we adopt the Gibbs conditions. We also find that the mass-radius relations for that EOS are consistent with the observations, and our model is then applicable to realistic astrophysical phenomena such as the thermal evolution of compact stars.
We have developed a new formulation to obtain self-gravitating, axisymmetric configurations in permanent rotation. The formulation is based on the Lagrangian variational principle, and treats not only barotropic but also baroclinic equations of state , for which angular momentum distributions are not necessarily cylindrical. We adopt a Monte Carlo technique, which is analogous to those employed in other fields, e.g. nuclear physics, in minimizing the energy functional, which is evaluated on a triangulated mesh. This letter is a proof of principle and detailed comparisons with existing results will be reported in the sequel, but some test calculations are presented, in which we have achieved an error of $O(10^{-4})$ in the Virial relation. We have in mind the application of this method to two-dimensional calculations of the evolutions of rotating stars, for which the Lagrangian formulation is best suited.
Bearing in mind the application to high-magnetic-field (high-B) radio pulsars, we investigate two-dimensional (2D) thermal evolutions of neutron stars (NSs). We pay particular attention to the influence of different equilibrium configurations on the surface temperature distributions. The equilibrium configurations are constructed in a systematic manner, in which both toroidal and poloidal magnetic fields are determined self-consistently with the inclusion of general relativistic effects. To solve the 2D heat transfer inside the NS interior out to the crust, we have developed an implicit code based on a finite-difference scheme that deals with anisotropic thermal conductivity and relevant cooling processes in the context of a standard cooling scenario. In agreement with previous studies, the surface temperatures near the pole become higher than those in the vicinity of the equator as a result of anisotropic heat transfer. Our results show that the ratio of the highest to the lowest surface temperatures changes maximally by one order of magnitude, depending on the equilibrium configurations. Despite such difference, we find that the area of such hot and cold spots is so small that the simulated X-ray spectrum could be well reproduced by a single temperature blackbody fitting.
We study the hadron-quark phase transition, taking into account the finite-size effects for neutron star matter. For the hadron phase, we adopt a realistic equation of state within the framework of the Brueckner-Hartree-Fock theory. For the quark pha se, we apply the Dyson-Schwinger method. The properties of the mixed phase are clarified by considering the finite-size effects. We find that, if the surface tension is strong enough, the equation of state becomes to be close the one with the Maxwell condition, though we properly adopt the Gibbs conditions. This result is qualitatively the same with the one by the use of the simple bag model. We also find that the mass-radius relation by the EoS is consistent with the observations of massive neutron stars.
We study the hadron-quark mixed phase in protoneutron stars, where neutrinos are trapped and lepton number becomes a conserved quantity besides the baryon number and electric charge. Considering protoneutron-star matter as a ternary system, the Gibbs conditions are applied together with the Coulomb interaction. We find that there no crystalline (pasta) structure appears in the regime of high lepton-number fraction; the size of pasta becomes very large and the geometrical structure becomes mechanically unstable due to the charge screening effect. Consequently the whole system is separated into two bulk regions like an amorphous state, where the surface effect is safely neglected. There, the local charge neutrality is approximately attained, so that the equation of state is effectively reduced to the one for a binary system. Hence, we conclude that there is no possibility for the density discontinuity to appear in protoneutron-star matter, which is a specific feature in a pure system. These features are important when considering astrophysical phenomena such as supernova explosions or radiation of the gravitational wave from protoneutron stars.
We study the quark-hadron mixed phase in proto-neutron stars with the finite-size effects. In the calculations of pasta structures appeared in the mixed phase, the Gibbs conditions require the pressure balance and chemical equilibrium between two pha ses besides the thermal equilibrium. We find that the region of the mixed phase is limited due to thermal instability. Moreover, we study the effects of neutrinos to the pasta structures. As a result, we find that the existence of neutrinos make the pasta structures unstable, too. These characteristic features of the hadron-quark mixed phase should be important for the middle stage of the evolutions of proto-neutron stars.
We report the effects of quark-hadron phase transition on the structures of general relativistic stars with purely toroidal magnetic field. For the mixed phase, we take into account of the finite-size effects, which lead to non-uniform Pasta structur es. Our study is based on axisymetric and stationary formalism including purely toroidal magnetic field. For hybrid stars, we find the characteristic distribution of magnetic field, which has a discontinuity originated in the quark-hadron mixed phase. These distributions of magnetic field will change astrophysical phenomena, such as cooling processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا