ترغب بنشر مسار تعليمي؟ اضغط هنا

190 - N. R. Cooper , A. M. Rey 2015
We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focussing on the limit of weak tunnel-coupling between nearest-neighbour lattice sites, we explain how adiabatic variation of optical dressing allows con trol of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantised particle transport.
87 - N. R. Cooper 2009
This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation le ads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores -- as set by the healing length -- start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as {it bosoni
We describe how a local non-equilibrium nuclear polarisation can be generated and detected by electrical means in a semiconductor quantum point contact device. We show that measurements of the nuclear spin relaxation rate will provide clear signature s of the interaction mechanism underlying the 0.7 conductance anomaly. Our analysis illustrates how nuclear magnetic resonance methods, which are used extensively to study strongly-correlated electron phases in bulk materials, can be made to play a similarly important role in nanoscale devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا