ترغب بنشر مسار تعليمي؟ اضغط هنا

Transitional disks with large dust cavities are important laboratories to study planet formation and disk evolution. Cold gas may still be present inside these cavities, but the quantification of this gas is challenging. The gas content is important to constrain the origin of the dust cavity. We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of 12CO 6--5 and 690 GHz (Band 9) continuum of five well-studied transitional disks. In addition, we analyze previously published Band 7 observations of a disk in 12CO 3--2 line and 345 GHz continuum. The observations are used to set constraints on the gas and dust surface density profiles, in particular the drop delta-gas of the gas density inside the dust cavity. The physical-chemical modeling code DALI is used to analyze the gas and dust images simultaneously. We model SR21, HD135344B, LkCa15, SR24S and RXJ1615-3255 (Band 9) and J1604-2130 (Band 7). The SED and continuum visibility curve constrain the dust surface density. Subsequently, the same model is used to calculate the 12CO emission, which is compared with the observations through spectra and intensity cuts. The amount of gas inside the cavity is quantified by varying the delta-gas parameter. Model fits to the dust and gas indicate that gas is still present inside the dust cavity for all disks but at a reduced level. The gas surface density drops inside the cavity by at least a factor 10, whereas the dust density drops by at least a factor 1000. Disk masses are comparable with previous estimates from the literature, cavity radii are found to be smaller than in the 345 GHz SubMillimeter Array (SMA) data. The derived gas surface density profiles suggest clearing of the cavity by one or more companions in all cases, trapping the millimeter-sized dust at the edge of the cavity.
Simple molecules like H2CO and CH3OH in protoplanetary disks are the starting point for the production of more complex organic molecules. So far, the observed chemical complexity in disks has been limited due to freeze out of molecules onto grains in the bulk of the cold outer disk. Complex molecules can be studied more directly in transitional disks with large inner holes, as these have a higher potential of detection, through UV heating of the outer disk and the directly exposed midplane at the wall. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 9 (~680 GHz) line data of the transitional disk Oph IRS 48, previously shown to have a large dust trap, to search for complex molecules in regions where planetesimals are forming. We report the detection of the H2CO 9(1,8)-8(1,7) line at 674 GHz, which is spatially resolved as a semi-ring at ~60 AU radius centered south from the star. The inferred H2CO abundance is ~10^{-8} derived by combining a physical disk model of the source with a non-LTE excitation calculation. Upper limits for CH3OH lines in the same disk give an abundance ratio H2CO/CH3OH>0.3, which points to both ice formation and gas-phase routes playing a role in the H2CO production. Upper limits on the abundances of H13CO+, CN and several other molecules in the disk are also derived and found to be consistent with full chemical models. The detection of the H2CO line demonstrates the start of complex organic molecules in a planet-forming disk. Future ALMA observations should be able to push down the abundance detection limits of other molecules by 1-2 orders of magnitude and test chemical models of organic molecules in (transitional) disks.
The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا