ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - Barry Bradlyn , N. Read 2015
We show that the topological central charge of a topological phase can be directly accessed from the ground-state wavefunctions for a system on a surface as a Berry curvature produced by adiabatic variation of the metric on the surface, at least up t o addition of another topological invariant that arises in some cases. For trial wavefunctions that are given by conformal blocks (chiral correlation functions) in a conformal field theory (CFT), we carry out this calculation analytically, using the hypothesis of generalized screening. The topological central charge is found to be that of the underlying CFT used in the construction, as expected. The calculation makes use of the gravitational anomaly in the chiral CFT. It is also shown that the Hall conductivity can be obtained in an analogous way from the U($1$) gauge anomaly.
110 - N. Read 2014
Parisis formal replica-symmetry--breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwa rds-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a non-standard interpretation of the RSB results in which the metastate is non-trivial and is responsible for what was called non-self-averaging. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the non-standard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low temperature phase; the corresponding exponent $zeta$ takes the value $4$ according to the field theory in high dimensions $d$, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size $W$ can be observed is of order $W^{d-zeta}$. These results extend the non-standard picture quantitatively; we show that arguments against this scenario are inconclusive.
82 - Barry Bradlyn , N. Read 2014
We construct a low-energy effective action for a two-dimensional non-relativistic topological (i.e. gapped) phase of matter in a continuum, which completely describes all of its bulk electrical, thermal, and stress-related properties in the limit of low frequencies, long distances, and zero temperature, without assuming either Lorentz or Galilean invariance. This is done by generalizing Luttingers approach to thermoelectric phenomena, via the introduction of a background vielbein (i.e. gravitational) field and spin connection a la Cartan, in addition to the electromagnetic vector potential, in the action for the microscopic degrees of freedom (the matter fields). Crucially, the geometry of spacetime is allowed to have timelike and spacelike torsion. These background fields make all natural invariances--- under U(1) gauge transformations, translations in both space and time, and spatial rotations---appear locally, and corresponding conserved currents and the stress tensor can be obtained, which obey natural continuity equations. On integrating out the matter fields, we derive the most general form of a local bulk induced action to first order in derivatives of the background fields, from which thermodynamic and transport properties can be obtained. We show that the gapped bulk cannot contribute to low-temperature thermoelectric transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely edge effects. The coupling to reduced spacelike torsion is found to be absent in minimally-coupled models, and using a generalized Belinfante stress tensor, the stress response to time-dependent vielbeins (i.e. strains) is the Hall viscosity, which is robust against perturbations and related to the spin current as in earlier work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا