ترغب بنشر مسار تعليمي؟ اضغط هنا

We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH$_{3}$CN, C$_{2}$H$_{3}$CN, C$_{2}$H$_{5}$CN, and NH$_{2}$CHO systematically trace hotter gas than the oxygen bearing organics CH$_{3}$OH, C$_{2}$H$_{5}$OH, CH$_{3}$OCH$_{3}$, and CH$_{3}$OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (T$_{rm kin}$$sim$300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales $gtrsim$ 10$^{5}$ years, with several species being under predicted by less than 3$sigma$. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO$_{2}$, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.
We present a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This surv ey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the sub-mm with high spectral resolution, and include frequencies $>$ 1 THz where the Earths atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the mm to the far-IR using the XCLASS program which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced $chi^{2}$ analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high ($>$10$^6$ cm$^{-3}$) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H$_{2}$ column densities also derived from the HIFI survey. The distribution of rotation temperatures, $T_{rm rot}$, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge $T_{rm rot}$ distributions, indicating the hot core has the most complex thermal structure.
We present Herschel/HIFI observations of the light hydride H$_{2}$S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the HEXOS GT key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H$_{2}$$^{32}$S, H$_{2}$$^{34}$S, and H$_{2}$$^{33}$S, respectively. We only analyze emission from the so called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H$_{2}$S follow straight lines given the uncertainties and yield T$_{rm rot}$=141$pm$12 K. This indicates H$_{2}$S is in LTE and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E$_{rm up}$>1000 K) are likely populated primarily by radiation pumping. We derive an H$_{2}$$^{32}$S column density, N$_{rm tot}$(H$_{2}$$^{32}$S)=9.5$pm$1.9$times$10$^{17}$ cm$^{-2}$, gas kinetic temperature, T$_{rm kin}$=120$pm^{13}_{10}$ K, and constrain the H$_{2}$ volume density, n$_{H2}$>9$times$10$^{7}$ cm$^{-3}$, for the H$_{2}$S emitting gas. These results point to an H$_{2}$S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KLs high luminosity. We also derive an H$_{2}$S ortho/para ratio of 1.7$pm$0.8 and set an upper limit for HDS/H2S of <4.9$times$10$^{-3}$.
We present the first high spectral resolution observations of Orion KL in the frequency ranges 1573.4 - 1702.8 GHz (band 6b) and 1788.4 - 1906.8 GHz (band 7b) obtained using the HIFI instrument on board the Herschel Space Observatory. We characterize the main emission lines found in the spectrum, which primarily arise from a range of components associated with Orion KL including the hot core, but also see widespread emission from components associated with molecular outflows traced by H2O, SO2, and OH. We find that the density of observed emission lines is significantly diminished in these bands compared to lower frequency Herschel/HIFI bands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا