ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent ground based near-IR studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7-10Myr in their progenitor molecular cloud, in conflict with optical based studies which find that clusters are exposed after 1-3Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young ($<10$~Myr) massive ($>5000$~msun) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and near-IR, and ground based near-IR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the near-IR is heavily affected by the resolution, and when aperture sizes $>40$~pc are used, all young/blue clusters move red-ward in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger affect of contamination in the near-IR, we find that, in some cases, clusters will appear to show near-IR excess when large ($>20$~pc) apertures are used. Our results explain why few young ($<6$~Myr), low extinction ($av < 1$~mag) clusters have been found in recent ground based near-IR studies of cluster populations, while many such clusters have been found in higher resolution HST based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the near-IR excess that has been found in a number of extragalactic YMCs.
We present HST/STIS optical and Gemini/NIFS near-IR IFU spectroscopy, and archival HST imaging of the triplet of super star clusters (A1, A2 and A3) in the core of the M82 starburst. Using model fits to the STIS spectra, and the weakness of red super giant CO absorption features (appearing at ~6 Myr) in the NIFS H-band spectra, the ages of A2 and A3 are $4.5pm1.0$~Myr. A1 has strong CO bands, consistent with our previously determined age of $6.4pm0.5$~Myr. The photometric masses of the three clusters are 4--$7times10^5$~Msol, and their sizes are $R_{rm eff}=159$, 104, 59~mas ($sim$2.8, 1.8, 1.0~pc) for A1,2 and 3. The STIS spectra yielded radial velocities of $320pm2$, $330pm6$, and $336pm5$~kms for A1,2, and 3, placing them at the eastern end of the $x_2$ orbits of M82s bar. Clusters A2 and A3 are in high density (800--1000~cmt) environments, and like A1, are surrounded by compact Htwo regions. We suggest the winds from A2 and A3 have stalled, as in A1, due to the high ISM ambient pressure. We propose that the 3 clusters were formed textit{in-situ} on the outer $x_2$ orbits in regions of dense molecular gas subsequently ionized by the rapidly evolving starburst. The similar radial velocities of the 3 clusters and their small projected separation of $sim 25$~pc suggest that they may merge in the near future unless this is prevented by velocity shearing.
This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6*10^5 Msun is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a (environmentally dependent) truncation in the cluster mass functions.
43 - N. Bastian , A. Adamo , M. Gieles 2011
Using multi-wavelength imaging from the Wide Field Camera 3 on the Hubble Space Telescope we study the stellar cluster populations of two adjacent fields in the nearby face-on spiral galaxy, M83. The observations cover the galactic centre and reach o ut to ~6 kpc, thereby spanning a large range of environmental conditions, ideal for testing empirical laws of cluster disruption. The clusters are selected by visual inspection to be centrally concentrated, symmetric, and resolved on the images. We find that a large fraction of objects detected by automated algorithms (e.g. SExtractor or Daofind) are not clusters, but rather are associations. These are likely to disperse into the field on timescales of tens of Myr due to their lower stellar densities and not due to gas expulsion (i.e. they were never gravitationally bound). We split the sample into two discrete fields (inner and outer regions of the galaxy) and search for evidence of environmentally dependent cluster disruption. Colour-colour diagrams of the clusters, when compared to simple stellar population models, already indicate that a much larger fraction of the clusters in the outer field are older by tens of Myr than in the inner field. This impression is quantified by estimating each clusters properties (age, mass, and extinction) and comparing the age/mass distributions between the two fields. Our results are inconsistent with universal age and mass distributions of clusters, and instead show that the ambient environment strongly affects the observed populations.
We present a study of the variation of spatial structure of stellar populations within dwarf galaxies as a function of the population age. We use deep Hubble Space Telescope/Advanced Camera for Surveys imaging of nearby dwarf galaxies in order to res olve individual stars and create composite colour-magnitude diagrams (CMDs) for each galaxy. Using the obtained CMDs, we select Blue Helium Burning stars (BHeBs), which can be unambiguously age-dated by comparing the absolute magnitude of individual stars with stellar isochrones. Additionally, we select a very young (<10 Myr) population of OB stars for a subset of the galaxies based on the tip of the young main-sequence. By selecting stars in different age ranges we can then study how the spatial distribution of these stars evolves with time. We find, in agreement with previous studies, that stars are born within galaxies with a high degree of substructure which is made up of a continuous distribution of clusters, groups and associations from parsec to hundreds of parsec scales. These structures disperse on timescales of tens to hundreds of Myr, which we quantify using the two-point correlation function and the Q-parameter developed by Cartwright & Whitworth (2004). On galactic scales, we can place lower limits on the time it takes to remove the original structure (i.e., structure survives for at least this long), tevo, which varies between ~100~Myr (NGC~2366) and ~350 Myr (DDO~165). This is similar to what we have found previously for the SMC (~80~Myr) and the LMC (~175 Myr). We do not find any strong correlations between tevo and the luminosity of the host galaxy.
78 - Nate Bastian 2010
Few topics in astronomy initiate such vigorous discussion as whether or not the initial mass function (IMF) of stars is universal, or instead sensitive to the initial conditions of star formation. The distinction is of critical importance: the IMF in fluences most of the observable properties of stellar populations and galaxies, and detecting variations in the IMF could provide deep insights into the process by which stars form. In this review, we take a critical look at the case for IMF variations, with a view towards whether other explanations are sufficient given the evidence. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal IMF: a power-law of Salpeter index ($Gamma=1.35$) above a few solar masses, and a log normal or shallower power-law ($Gamma sim 0-0.25$) between a few tenths and a few solar masses (ignoring the effects of unresolved binaries). The shape and universality of the IMF at the stellar-substellar boundary is still under investigation and uncertainties remain large, but most observations are consistent with a IMF that declines ($Gamma < -0.5$) well below the hydrogen burning limit. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a universal IMF, suggesting no gross variations in the IMF over much of cosmic time. There are indications of non-standard IMFs in specific local and extragalactic environments, which clearly warrant further study. Nonetheless, there is no clear evidence that the IMF varies strongly and systematically as a function of initial conditions after the first few generations of stars.
46 - Nate Bastian 2008
We present an analysis of the spatial distribution of various stellar populations within the Large Magellanic Cloud. We combine mid-infrared selected young stellar objects, optically selected samples with mean ages between ~9 and ~1000 Myr, and exist ing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC. For the analysis we use Fractured Minimum Spanning Trees, the statistical Q parameter, and the two-point correlation function. Restricting our analysis to young massive (OB) stars we confirm our results obtained for M33, namely that the luminosity function of the groups is well described by a power-law with index -2, and that there is no characteristic length-scale of star-forming regions. We find that stars in the LMC are born with a large amount of substructure, consistent with a 2D fractal distribution with dimension ~1.8 and evolve towards a uniform distribution on a timescale of ~175 Myr. This is comparable to the crossing time of the galaxy and we suggest that stellar structure, regardless of spatial scale, will be eliminated in a crossing time. This may explain the smooth distribution of stars in massive/dense young clusters in the Galaxy, while other, less massive, clusters still display large amounts of structure at similar ages. By comparing the stellar and star cluster distributions and evolving timescales, we show that infant mortality of clusters (or popping clusters) have a negligible influence on galactic structure. Finally, we quantify the influence of the elongation, differential extinction, and contamination of a population on the measured Q value.
70 - N. Bastian 2008
We present an analysis of the spatial distribution of various stellar populations within the Large and Small Magellanic Clouds. We use optically selected stellar samples with mean ages between ~9 and ~1000 Myr, and existing stellar cluster catalogues to investigate how stellar structures form and evolve within the LMC/SMC. We use two statistical techniques to study the evolution of structure within these galaxies, the $Q$-parameter and the two-point correlation function (TPCF). In both galaxies we find the stars are born with a high degree of substructure (i.e. are highly fractal) and that the stellar distribution approaches that of the background population on timescales similar to the crossing times of the galaxy (~80/150 Myr for the SMC/LMC respectively). By comparing our observations to simple models of structural evolution we find that popping star clusters do not significantly influence structural evolution in these galaxies. Instead we argue that general galactic dynamics are the main drivers, and that substructure will be erased in approximately the crossing time, regardless of spatial scale, from small clusters to whole galaxies. This can explain why many young Galactic clusters have high degrees of substructure, while others are smooth and centrally concentrated. We conclude with a general discussion on cluster infant mortality, in an attempt to clarify the time/spatial scales involved.
35 - N. Bastian 2008
The observed properties of young star clusters, such as the core radius and luminosity profile, change rapidly during the early evolution of the clusters. Here we present observations of 6 young clusters in M51 where we derive their sizes using HST i maging and ages using deep Gemini-North spectroscopy. We find evidence for a rapid expansion of the cluster cores during the first 20 Myr of their evolution. We confirm this trend by including data from the literature of both Galactic and extra-galactic embedded and young clusters, and possible mechanisms (rapid gas removal, stellar evolutionary mass-loss, and internal dynamical heating) are discussed. We explore the implications of this result, focussing on the fact that clusters were more concentrated in the past, implying that their stellar densities were much higher and relaxation times correspondingly shorter. Thus, when estimating if a particular cluster is dynamically relaxed, (i.e. when determining if a clusters mass segregation is due to primordial or dynamical processes), the current relaxation time is only an upper-limit, with the relaxation time likely being significantly shorter in the past.
We present a detailed study of the stellar cluster M82F, using multi-band high resolution HST imaging and deep ground based optical slit and integral field spectroscopy. Using the imaging we create colour maps of the cluster and surrounding region in order to search for substructure. We find a large amount of substructure, which we interpret as the result of differential extinction across the projected face of the cluster. With this interpretation, we are able to construct a spatially resolved extinction map across the cluster which is used to derive the intrinsic flux distribution. Fitting cluster profiles (King and EFF) to the intrinsic images we find that the cluster is 15-30% larger than previous estimates, and that no strong evidence of mass segregation in this cluster exists. Using the optical spectra, we find that the age of M82F is 60-80 Myr and from its velocity conclude that the cluster is not physically associated with a large HII region that it is projected upon, both in agreement with previous studies. The reconstructed integral field maps show that that majority of the line emission comes from a nearby HII region. The spatial dependence of the line widths (implying the presence of multiple components)measured corresponds to the extinction map derived from photometry, indicating that the gas/dust clouds responsible for the extinction are also partially ionised. Even with the wealth of observations presented here, we do not find a conclusive solution to the problem of the high light-to-mass ratio previously found for this cluster and its possible top-heavy stellar IMF.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا