ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that t hese two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.
The anisotropic complex dielectric response was accurately extracted from spectroscopic ellipsometry measurements at phonon frequencies for the three principal crystallographic directions of an orthorhombic (Pbnm) YTiO_3 single crystal. We identify a ll twenty five infrared-active phonon modes allowed by symmetry, 7B_1u, 9B_2u, and 9B_3u, polarized along the c-, b-, and a-axis, respectively. From a classical dispersion analysis of the complex dielectric functions tildeepsilon(omega) and their inverses -1/tildeepsilon(omega) we define the resonant frequencies, widths, and oscillator strengths of the transverse (TO) and longitudinal (LO) phonon modes. We calculate eigenfrequencies and eigenvectors of B_1u, B_2u, and B_3u normal modes and suggest assignments of the TO phonon modes observed in our ellipsometry spectra by comparing their frequencies and oscillator strengths with those resulting from the present lattice-dynamics study. Based on these assignments, we estimate dynamical effective charges of the atoms in the YTiO_3 lattice. We find that, in general, the dynamical effective charges in YTiO_3 lattice are typical for a family of perovskite oxides. By contrast to a ferroelectric BaTiO_3, the dynamical effective charge of oxygen related to a displacement along the c-axis does not show the anomalously large value. At the same time, the dynamical effective charges of Y and ab-plane oxygen exhibit anisotropy, indicating strong hybridization along the a-axis.
We have studied the temperature dependence of spectroscopic ellipsometry spectra of an electrically insulating, nearly stoichiometric YTiO_3 single crystal with ferromagnetic Curie temperature T_C = 30 K. The optical response exhibits a weak but noti ceable anisotropy. Using a classical dispersion analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV. Although the optical conductivity spectra are only weakly temperature dependent below 300 K, we are able to distinguish high- and low-temperature regimes with a distinct crossover point around 100 K. The low-temperature regime in the optical response coincides with the temperature range in which significant deviations from Curie-Weiss mean field behavior are observed in the magnetization. Using an analysis based on a simple superexchange model, the spectral weight rearrangement can be attributed to intersite d_i^1d_j^1 longrightarrow d_i^2d_j^0 optical transitions. In particular, Kramers-Kronig consistent changes in optical spectra around 2.9 eV can be associated with the high-spin-state (^3T_1) optical transition. This indicates that other mechanisms, such as weakly dipole-allowed p-d transitions and/or exciton-polaron excitations, can contribute significantly to the optical band at 2 eV. The recorded optical spectral weight gain of 2.9 eV optical band is significantly suppressed and anisotropic, which we associate with complex spin-orbit-lattice phenomena near ferromagnetic ordering temperature in YTiO_3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا