ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of four doubly imaged quasar lenses. All the four systems are selected as lensed quasar candidates from the Sloan Digital Sky Survey data. We confirm their lensing hypothesis with additional imaging and spectroscopic follow-up observations. The discovered lenses are SDSS J0743+2457 with the source redshift z_s=2.165, the lens redshift z_l=0.381, and the image separation theta=1.034, SDSS J1128+2402 with z_s=1.608 and theta=0.844, SDSS J1405+0959 with z_s=1.810, z_l~0.66, and theta=1.978, and SDSS J1515+1511 with z_s=2.054, z_l=0.742, and theta=1.989. It is difficult to estimate the lens redshift of SDSS J1128+2402 from the current data. Two of the four systems (SDSS J1405+0959 and SDSS J1515+1511) are included in our final statistical lens sample to derive constraints on dark energy and the evolution of massive galaxies.
We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spe ctroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i<19.1 in the redshift range 0.6<z<2.2, where we require the lenses to have image separations of 1<theta<20 and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be Omega_Lambda=0.84^{+0.06}_{-0.08}(stat.)^{+0.09}_{-0.07}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1 to 16.6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.
We present the results of deep spectroscopy for the central region of the cluster lens SDSS J1004+4112 with the Subaru telescope. A secure detection of an emission line of the faint blue stellar object (component E) near the center of the brightest c luster galaxy (G1) confirms that it is the central fifth image of the lensed quasar system. In addition, we measure the stellar velocity dispersion of G1 to be sigma_* = 352+-13 km/s. We combine these results to obtain constraints on the mass M_BH of the putative black hole (BH) at the center of the inactive galaxy G1, and hence on the M_BH-sigma_* relation at the lens redshift z_l=0.68. From detailed mass modeling, we place an upper limit on the black hole mass, M_BH < 2.1x10^{10}M_sun at 1-sigma level (<3.1x10^{10}M_sun at 3-sigma), which is consistent with black hole masses expected from the local and redshift-evolved M_BH-sigma_* relations, M_BH~10^{9}-10^{10}M_sun.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا