ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the detection of the millisecond pulsar PSR J0437-4715 with the Murchison Widefield Array (MWA) at a frequency of 192 MHz. Our observations show rapid modulations of pulse intensity in time and frequency that arise from diffractive scint illation effects in the interstellar medium (ISM), as well as prominent drifts of intensity maxima in the time-frequency plane that arise from refractive effects. Our analysis suggests that the scattering screen is located at a distance of $sim$80-120 pc from the Sun, in disagreement with a recent claim that the screen is closer ($sim$10 pc). Comparisons with higher frequency data from Parkes reveals a dramatic evolution of the pulse profile with frequency, with the outer conal emission becoming comparable in strength to that from the core and inner conal regions. As well as demonstrating high time resolution science capabilities currently possible with the MWA, our observations underscore the potential to conduct low-frequency investigations of timing-array millisecond pulsars, which may lead to increased sensitivity for the detection of nanoHertz gravitational waves via the accurate characterisation of ISM effects.
We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Arrays Low Frequency Demonstrator (MWA-LFD). Our observations are among the first hi gh-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670$pm$100 $mu$s, and the implied strength of scattering (scattering measure) is the lowest that is estimated towards the Crab nebula from observations made so far. The sensitivity of the system is largely dictated by the sky background, and our simple equipment is capable of detecting pulses that are brighter than $sim$9 kJy in amplitude. The brightest giant pulse detected in our data has a peak amplitude of $sim$50 kJy, and the implied brightness temperature is $10^{31.6}$ K. We discuss the giant pulse detection prospects with the full MWA-LFD system. With a sensitivity over two orders of magnitude larger than the prototype equipment, the full system will be capable of detecting such bright giant pulses out to a wide range of Galactic distances; from $sim$8 to $sim$30 kpc depending on the frequency. The MWA-LFD will thus be a highly promising instrument for the studies of giant pulses and other fast radio transients at low frequencies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا