ترغب بنشر مسار تعليمي؟ اضغط هنا

The second pulsar catalogue of the Fermi Large Area Telescope (LAT) will contain in excess of 100 gamma-ray pulsars. The light curves (LCs) of these pulsars exhibit a variety of shapes, and also different relative phase lags with respect to their rad io pulses, hinting at distinct underlying emission properties (e.g., inclination and observer angles) for the individual pulsars. Detailed geometric modelling of the radio and gamma-ray LCs may provide constraints on the B-field structure and emission geometry. We used different B-field solutions, including the static vacuum dipole and the retarded vacuum dipole, in conjunction with an existing geometric modelling code, and constructed radiation sky maps and LCs for several different pulsar parameters. Standard emission geometries were assumed, namely the two-pole caustic (TPC) and outer gap (OG) models. The sky maps and LCs of the various B-field and radiation model combinations were compared to study their effect on the resulting LCs. As an application, we compared our model LCs with Fermi LAT data for the Vela pulsar, and inferred the most probable configuration in this case, thereby constraining Velas high-altitude magnetic structure and system geometry.
The light curves of gamma-ray pulsars detected by the Fermi Large Area Telescope show great variety in profile shape and position relative to their radio profiles. Such diversity hints at distinct underlying magnetospheric and/or emission geometries for the individual pulsars. We implemented an offset-dipole magnetic field in an existing geometric pulsar modelling code which already includes static and retarded vacuum dipole fields. In our model, this offset is characterised by a parameter epsilon (with epsilon = 0 corresponding to the static dipole case). We constructed sky maps and light curves for several pulsar parameters and magnetic fields, studying the effect of an offset dipole on the resulting light curves. A standard two-pole caustic emission geometry was used. As an application, we compared our model light curves with Fermi data for the bright Vela pulsar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا