ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogo rov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard Lambda-CDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds.
We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse grids, which is used as a shortcut for the likelihood-evaluation. We obt ain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary degree. Our approach is completely general, and it can adaptively exploit the properties of the underlying function. We can thus apply it to any problem where an accurate interpolation of a function is needed.
We search for an unusual alignment of the preferred axes of the quadrupole and octopole, the so-called axis of evil, in the CMB temperature and polarization data from WMAP. We use the part of the polarization map which is uncorrelated with the temper ature map as a statistically independent probe of the axis of evil, which helps to assess whether the latter has a cosmological origin or if is a mere chance fluctuation in the temperature. Note, though, that for certain models creating a preferred axis in the temperature map, we would not expect to see the axis in the uncorrelated polarization map. We find that the axis of the quadrupole of the uncorrelated polarization map roughly aligns with the axis of evil within our measurement precision, whereas the axis of the octopole does not. However, with our measurement uncertainty, the probability of such a scenario to happen by chance in an isotropic universe is of the order of 50 per cent. We also find that the so-called cold spot present in the CMB temperature map is even colder in the part of the temperature map which is uncorrelated with the polarization, although there is still a large uncertainty in the latter. Therefore, our analysis of the axis of evil and a future analysis of the cold spot in the uncorrelated temperature data will strongly benefit from the polarization data expected from the Planck satellite.
Secondary anisotropies of the cosmic microwave background (CMB) can be detected by using the cross-correlation between the large-scale structure (LSS) and the CMB temperature fluctuations. In such studies, chance correlations of primordial CMB fluctu ations with the LSS are the main source of uncertainty. We present a method for reducing this noise by exploiting information contained in the polarisation of CMB photons. The method is described in general terms and then applied to our recently proposed optimal method for measuring the integrated Sachs-Wolfe (ISW) effect. We obtain an expected signal-to-noise ratio of up to 8.5. This corresponds to an enhancement of the signal-to-noise by 23 per cent as compared to the standard method for ISW detection, and by 16 per cent w.r.t. our recently proposed method, both for the best-case scenario of having perfect (noiseless) CMB and LSS data.
We analyse the local variance effect in the standard method for detecting the integrated Sachs-Wolfe effect (ISW) via cross-correlating the cosmic microwave background (CMB) with the large-scale structure (LSS). Local variance is defined as the syste matic noise in the ISW detection that originates in the realisation of the matter distribution in the observed Universe. We show that the local variance contributes about 11 per cent to the total variance in the standard method, if a perfect and complete LSS survey up to z ~ 2 is assumed. Due to local variance, the estimated detection significance and cosmological parameter constraints in the standard method are biased. In this work, we present an optimal method of how to reduce the local variance effect in the ISW detection by working conditional on the LSS-data. The variance of the optimal method, and hence the signal-to-noise ratio, depends on the actual realisation of the matter distribution in the observed Universe. We show that for an ideal galaxy survey, the average signal-to-noise ratio is enhanced by about 7 per cent in the optimal method, as compared to the standard method. Furthermore, in the optimal method there is no need to estimate the covariance matrix by Monte Carlo simulations as in the standard method, which saves time and increases the accuracy. Finally, we derive the correct joint likelihood function for cosmological parameters given CMB- and LSS-data within the linear LSS formation regime, which includes a small coupling of the two datasets due to the ISW effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا