ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the results of new simulations of near-infrared (NIR) observations of the Sagittarius A* (Sgr A*) counterpart associated with the super-massive black hole at the Galactic Center. The observations have been carried out using the NACO adap tive optics (AO) instrument at the European Southern Observatorys Very Large Telescope and CIAO NIR camera on the Subaru telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007 and 28 May 2008). We used a model of synchrotron emission from relativistic electrons in the inner parts of an accretion disk. The relativistic simulations have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe the existence of a correlation between the modulations of the observed flux density light curves and changes in polarimetric data. Furthermore, we confirm that the same correlation is also predicted by the hot spot model. Correlations between intensity and polarimetric parameters of the observed light curves as well as a comparison of predicted and observed light curve features through a pattern recognition algorithm result in the detection of a signature of orbiting matter under the influence of strong gravity. This pattern is detected statistically significant against randomly polarized red noise. Expected results from future observations of VLT interferometry like GRAVITY experiment are also discussed.
We report on recent near-infrared (NIR) and X-ray observations of Sagittarius A* (Sgr A*), the electromagnetic manifestation of the ~4x10^6 solar masses super-massive black hole (SMBH) at the Galactic Center. The goal of these coordinated multi-wavel ength observations is to investigate the variable emission from Sgr A* in order to obtain a better understanding of the underlying physical processes in the accretion flow/outflow. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescope (July 2005, May 2007) and the ACIS-I instrument aboard the Chandra X-ray Observatory (July 2005). We report on a polarized NIR flare synchronous to a 8x1033 erg/s X-ray flare in July 2005, and a further flare in May 2007 that shows the highest sub-flare to flare contrast observed until now. The observations can be interpreted in the framework of a model involving a temporary disk with a short jet. In the disk component flux density variations can be explained due to hot spots on relativistic orbits around the central SMBH. The variations of the sub-structures of the May 2007 flare are interpreted as a variation of the hot spot structure due to differential rotation within the disk.
At the center of the Milky Way, with a distance of ~8 kpc, the compact source Sagittarius A* (SgrA*) can be associated with a super massive black hole of ~4x10^6 solar masses. SgrA* shows strong variability from the radio to the X-ray wavelength doma ins. Here we report on simultaneous NIR/sub-millimeter/X-ray observations from May 2007 that involved the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescope, the Australian Telescope Compact Array (ATCA), the US mm-array CARMA, the IRAM 30m mm-telescope, and other telescopes. We concentrate on the time series of mm/sub-mm data from CARMA, ATCA, and the MAMBO bolometer at the IRAM 30m telescope.
Here we report on recent near-infrared observations of the Sgr A* counterpart associated with the super-massive ~ 4x10^6 M_sun black hole at the Galactic Center. We find that the May 2007 flare shows the highest sub-flare contrast observed until now, as well as evidence for variations in the profile of consecutive sub-flares. We modeled the flare profile variations according to the elongation and change of the shape of a spot due to differential rotation within the accretion disk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا