ترغب بنشر مسار تعليمي؟ اضغط هنا

We study electric field quench in N=2 strongly coupled gauge theory, using the AdS/CFT correspondence. To do so, we consider the aforementioned system which is subjected to a time-dependent electric field indicating an out of equilibrium system. Defi ning the equilibration time t_{eq}, at which the system relaxes to its final equilibrium state after injecting the energy, we find that the rescaled equilibriation time k^{-1}t_{eq} decreases as the transition time k increases. Therefore, we expect that for sufficiently large transition time, k ->infinity, the relaxation of the system to its final equilibrium can be an adiabatic process. On the other hand, we observe a universal behavior for the fast quenches, k << 1, meaning that the rescaled equilibration time does not depend on the final value of the time-dependent electric field. Our calculations generalized to systems in various dimensions also confirm universalization process which seems to be a typical feature of all strongly coupled gauge theories that admit a gravitational dual.
We use gauge/gravity duality to investigate the effect of thermal fluctuations on the dissociation of the quarkonium meson in strongly coupled $(3+1)$-dimensional gauge theories. This is done by studying the instability and probable first order phase transition of a probe D7-brane in the dual gravity theory. We explicitly show that for the Minkowski embeddings with their tips close to the horizon in the background, the long wavelength thermal fluctuations lead to an imaginary term in their action signaling an instability in the system. Due to this instability, a phase transition is expected. On the gauge theory side, it indicates that the quarkonium mesons are not stable and dissociate in the plasma. Identifying the imaginary part of the probe barne action with the thermal width of the mesons, we observe that the thermal width increases as one decreases the mass of the quarks. Also keeping the mass fixed, thermal width increases by temperature as expected.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا