ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the distribution map of the far-infrared [OIII] 88um line emission around the 30 Doradus (30 Dor) region in the Large Magellanic Cloud obtained with the Fourier Transform Spectrometer of the Far-Infrared Surveyor onboard AKARI. The map rev eals that the [OIII] emission is widely distributed by more than 10 around the super star cluster R136, implying that the 30 Dor region is affluent with interstellar radiation field hard enough to ionize O^{2+}. The observed [OIII] line intensities are as high as (1-2) x 10^{-6} W m^{-2} sr^{-1} on the peripheral regions 4-5 away from the center of 30 Dor, which requires gas densities of 60-100 cm^{-3}. However the observed size of the distribution of the [OIII] emission is too large to be explained by massive stars in the 30 Dor region enshrouded by clouds with the constant gas density of 10^2 cm^{-3}. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from the energetic photons.
We have developed an imaging Fourier transform spectrometer (FTS) for space-based far-infrared astronomical observations. The FTS employs a newly developed photoconductive detector arrays with a capacitive trans-impedance amplifier, which makes the F TS a completely unique instrument. The FTS was installed as a function of the far-infrared instrument (FIS: Far-Infrared Surveyor) on the Japanese astronomical satellite, AKARI, which was launched on February 21, 2006 (UT) from the Uchinoura Space Center. The FIS-FTS had been operated for more than one year before liquid helium ran out on August 26, 2007. The FIS-FTS was operated nearly six hundreds times, which corresponds to more than one hundred hours of astronomical observations and almost the same amount of time for calibrations. As expected from laboratory measurements, the FIS-FTS performed well and has produced a large set of astronomical data for valuable objects. Meanwhile, it becomes clear that the detector transient effect is a considerable factor for FTSs with photoconductive detectors. In this paper, the instrumentation of the FIS-FTS and interesting phenomena related to FTS using photoconductive detectors are described, and future applications of this kind of FTS system are discussed.
The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky wi th high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, it can simultaneously make a spectral map. This paper summarizes the in-flight technical and operational performance of the FIS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا