ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of the growth conditions in the spin transport properties of silver (Ag) have been studied by using lateral spin valve structures. By changing the deposition conditions of Ag from polycrystalline to epitaxial growth, we have observed a consi derable enhancement of the spin diffusion length, from $lambda_{Ag}$ = 449 $pm$ 30 to 823 $pm$ 59 nm. This study shows that diminishing the grain boundary contribution to the spin relaxation mechanism is an effective way to improve the spin diffusion length in metallic nanostructures.
We have studied the spin transport and the spin Hall effect as a function of temperature for platinum (Pt) and gold (Au) in lateral spin valve structures. First, by using the spin absorption technique, we extract the spin diffusion length of Pt and A u. Secondly, using the same devices, we have measured the spin Hall conductivity and analyzed its evolution with temperature to identify the dominant scattering mechanisms behind the spin Hall effect. This analysis confirms that the intrinsic mechanism dominates in Pt whereas extrinsic effects are more relevant in Au. Moreover, we identify and quantify the phonon-induced skew scattering. We show that this contribution to skew scattering becomes relevant in metals such as Au, with a low residual resistivity.
We report magnetoresistance measurements on thin Pt bars grown on epitaxial (001) and (111) CoFe2O4 (CFO) ferrimagnetic insulating films. The results can be described in terms of the recently discovered spin Hall magnetoresistance (SMR). The magnitud e of the SMR depends on the interface preparation conditions, being optimal when Pt/CFO samples are prepared in situ, in a single process. The spin-mixing interface conductance, the key parameter governing SMR and other relevant spin-dependent phenomena such as spin pumping or spin Seebeck effect, is found to be different depending on the crystallographic orientation of CFO, highlighting the role of the composition and density of magnetic ions at the interface on spin mixing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا