ترغب بنشر مسار تعليمي؟ اضغط هنا

Ratio control for two interacting processes is proposed with a PID feedforward design based on model predictive control (MPC) scheme. At each sampling instant, the MPC control action minimizes a state-dependent performance index associated with a PID -type state vector, thus yielding a PID-type control structure. Compared to the standard MPC formulations with separated single-variable control, such a control action allows one to take into account the non-uniformity of the two process outputs. After reformulating the MPC control law as a PID control law, we provide conditions for prediction horizon and weighting matrices so that the closed-loop control is asymptotically stable, and show the effectiveness of the approach with simulation and experiment results.
Let $I(G)$ be the edge ideal of a simple graph $G$. In this paper, we will give sufficient and necessary combinatorial conditions of $G$ in which the second symbolic and ordinary power of its edge ideal are Cohen-Macaulay (resp. Buchsbaum, generalize d Cohen-Macaulay). As an application of our results, we will classify all bipartite graphs in which the second (symbolic) powers are Cohen-Macaulay (resp. Buchsbaum, generalized Cohen-Macaulay).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا