ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - Ming Zhao 2014
We report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/WIRC in H and Ks bands and with Spitzer/IRAC at 3.6 and 4.5 micron. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P -32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.923 +/- 0. 004 and a position angle 110.64 deg +/- 0.12 deg. We measure the flux ratios of the binary in g r i z and H & Ks bands, and determine Teff = 3565 +/- 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090 +/- 0.033%, 0.178 +/- 0.057%, 0.364 +/- 0.016%, and 0.438 +/- 0.020% in the H, Ks, 3.6 and 4.5 micron bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well-described by a blackbody model for the planet with Tp = 2042 +/- 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 +/- 1.3 min from the predicted mid-eclipse time, which constrains e = 0.0072 +0.0700/-0.0064 when combined with RV data and is more consistent with a circular orbit.
197 - Ming Zhao 2012
We report the detection of thermal emission from the hot Jupiter WASP-3b in the KS band, using a newly developed guiding scheme for the WIRC instrument at the Palomar Hale 200in telescope. Our new guiding scheme has improved the telescope guiding pre cision by a factor of ~5-7, significantly reducing the correlated systematics in the measured light curves. This results in the detection of a secondary eclipse with depth of 0.181%pm0.020% (9-{sigma}) - a significant improvement in WIRCs photometric precision and a demonstration of the capability of Palomar/WIRC to produce high quality measurements of exoplanetary atmospheres. Our measured eclipse depth cannot be explained by model atmospheres with heat redistribution but favor a pure radiative equilibrium case with no redistribution across the surface of the planet. Our measurement also gives an eclipse phase center of 0.5045pm0.0020, corresponding to an ecos{omega} of 0.0070pm0.0032. This result is consistent with a circular orbit, although it also suggests the planets orbit might be slightly eccentric. The possible non-zero eccentricity provides insight into the tidal circularization process of the star-planet system, but also might have been caused by a second low-mass planet in the system, as suggested by a previous transit timing variation study. More secondary eclipse observations, especially at multiple wavelengths, are necessary to determine the temperature-pressure profile of the planetary atmosphere and shed light on its orbital eccentricity.
82 - Ming Zhao 2011
We report a new detection of the H-band thermal emission of CoRoT-1b and two confirmation detections of the Ks-band thermal emission of WASP-12b at secondary eclipses. The H-band measurement of CoRoT-1b shows an eclipse depth of 0.145%pm0.049% with a 3-{sigma} percentile between 0.033% - 0.235%. This depth is consistent with the previous conclusions that the planet has an isother- mal region with inefficient heat transport from dayside to nightside, and has a dayside thermal inversion layer at high altitude. The two Ks band detections of WASP-12b show a joint eclipse depth of 0.299%pm0.065%. This result agrees with the measurement of Croll & collaborators, providing independent confirmation of their measurement. The repeatability of the WASP-12b measurements also validates our data analysis method. Our measurements, in addition to a number of previous results made with other telescopes, demonstrate that ground-based observations are becoming widely available for characterization of atmospheres of hot Jupiters.
162 - M. Zhao 2008
We present the first resolved images of the eclipsing binary Beta Lyrae, obtained with the CHARA Array interferometer and the MIRC combiner in the H band. The images clearly show the mass donor and the thick disk surrounding the mass gainer at all si x epochs of observation. The donor is brighter and generally appears elongated in the images, the first direct detection of photospheric tidal distortion due to Roche-lobe filling. We also confirm expectations that the disk component is more elongated than the donor and is relatively fainter at this wavelength. Image analysis and model fitting for each epoch were used for calculating the first astrometric orbital solution for Beta Lyrae, yielding precise values for the orbital inclination and position angle. The derived semi-ma jor axis also allows us to estimate the distance of Beta Lyrae; however, systematic differences between the models and the images limit the accuracy of our distance estimate to about 15%. To address these issues, we will need a more physical, self-consistent model to account for all epochs as well as the multi-wavelength information from the eclipsing light curves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا