ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel properties arising at interfaces between transition metal oxides, particularly the conductivity at the interface of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new paradigms, challenges, and opportunities in condensed matter p hysics. Conventional transport measurements have established that intrinsic conductivity appears in LAO/STO interfaces when the LAO film matches or exceeds a critical thickness of 4 unit cells (uc). Recently, a number of experiments raise important questions about the role of the LAO film, the influence of photons, and the effective differences between vacuum/STO and LAO/STO, both above and below the standard critical thickness. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples, as well as resonant inelastic x-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO film. In all the samples, the character of the conduction bands, their carrier densities, the Ti3+ crystal fields, and the responses to photon irradiation bear strong similarities. However, LAO/STO interfaces exhibit intrinsic instability toward in-plane folding of the Fermi surface at and above the 4-uc thickness threshold. This ordering distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO and coincides with the onset of unique properties such as magnetism and built-in conductivity.
We report on a systematic study of the growth of epitaxial TiO2 films deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single crystals. By using in-situ reflection high energy electron diffraction, low energy electron diffraction, x -ray photoemission spectroscopy and scanning probe microscopy, we show that the stabilization of the anatase (001) phase is preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a thickness between 2 and 4 nm. The data demonstrate that the formation of this phase is related to the activation of long range Sr migration from the substrate to the film. The role of interface Gibbs energy minimization, as a driving force for Sr diffusion, is discussed. Our results enrich the phase diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient SrTiO phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا