ترغب بنشر مسار تعليمي؟ اضغط هنا

The Tarski number of a non-amenable group G is the minimal number of pieces in a paradoxical decomposition of G. In this paper we investigate how Tarski numbers may change under various group-theoretic operations. Using these estimates and known prop erties of Golod-Shafarevich groups, we show that the Tarski numbers of 2-generated non-amenable groups can be arbitrarily large. We also use the cost of group actions to show that there exist groups with Tarski numbers 5 and 6. These provide the first examples of non-amenable groups without free subgroups whose Tarski number has been computed precisely.
In this paper we initiate a systematic study of the abstract commensurators of profinite groups. The abstract commensurator of a profinite group $G$ is a group $Comm(G)$ which depends only on the commensurability class of $G$. We study various proper ties of $Comm(G)$; in particular, we find two natural ways to turn it into a topological group. We also use $Comm(G)$ to study topological groups which contain $G$ as an open subgroup (all such groups are totally disconnected and locally compact). For instance, we construct a topologically simple group which contains the pro-2 completion of the Grigorchuk group as an open subgroup. On the other hand, we show that some profinite groups cannot be embedded as open subgroups of compactly generated topologically simple groups. Several celebrated rigidity theorems, like Pinks analogue of Mostows strong rigidity theorem for simple algebraic groups defined over local fields and the Neukirch-Uchida theorem, can be reformulated as structure theorems for the commensurators of certain profinite groups.
In this paper we introduce the concept of weighted deficiency for abstract and pro-$p$ groups and study groups of positive weighted deficiency which generalize Golod-Shafarevich groups. In order to study weighted deficiency we introduce weight
The goal of this paper is to give a group-theoretic proof of the congruence subgroup property for $Aut(F_2)$, the group of automorphisms of a free group on two generators. This result was first proved by Asada using techniques from anabelian geometry , and our proof is, to a large extent, a translation of Asadas proof into group-theoretic language. This translation enables us to simplify many parts of Asadas original argument and prove a quantitative version of the congruence subgroup property for $Aut(F_2)$.
The main goal of this paper is to prove that every Golod-Shafarevich group has an infinite quotient with Kazhdans property $(T)$. In particular, this gives an affirmative answer to the well-known question about non-amenability of Golod-Shafarevich groups.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا