ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - R.-P. Kudritzki 2011
The quantitative spectral analysis of low resolution Keck LRIS spectra of blue supergiants in the disk of the giant spiral galaxy M81 is used to determine stellar effective temperatures, gravities, metallicities, luminosites, interstellar reddening a nd a new distance using the Flux-weighted Gravity--Luminosity Relationship (FGLR). Substantial reddening and extinction is found with E(B-V) ranging between 0.13 to 0.38 mag and an average value of 0.26 mag. The distance modulus obtained after individual reddening corrections is 27.7+/-0.1 mag. The result is discussed with regard to recently measured TRGB and Cepheid distances. The metallicities (based on elements such as iron, titanium, magnesium) are supersolar (~0.2 dex) in the inner disk (R<=5kpc) and slightly subsolar (~ -0.05 dex) in the outer disk (R>10 kpc) with a shallow metallicity gradient of 0.034 dex/kpc. The comparison with published oxygen abundances of planetary nebulae and metallicities determined through fits of HST color-magnitude diagrams indicates a late metal enrichment and a flattening of the abundance gradient over the last 5 Gyrs. This might be the result of gas infall from metal rich satellite galaxies. Combining these M81 metallicities with published blue supergiant abundance studies in the Local Group and the Sculptor Group a galaxy mass metallicity-relationship based solely on stellar spectroscopic studies is presented and compared with recent studies of SDSS star forming galaxies.
(abridged) A detailed study of the blue supergiant UIT005 (B2-2.5Ia+) in M33 is presented. The results of our quantitative spectral analysis indicate that the star is a very luminous, log(L/Lsun)~5.9 dex, and massive, M~50 Msun, object, showing a ver y high nitrogen-to-oxygen ratio in its surface (N/O~8, by mass). Based on the derived Mg and Si abundances, we argue that this high N/O ratio cannot be the result of an initial low O content due to its location on the disk of M33, known to present a steep metallicity gradient. In combination with the He abundance, the most plausible interpretation is that UIT005 is in an advanced stage of evolution, showing in its surface N enrichment and O depletion resulting from mixing with CNO processed material from the stellar interior. A comparison with the predictions of current stellar evolutionary models indicates that there are significant discrepancies, in particular with regard to the degree of chemical processing, with the models predicting a much lower degree of O depletion than observed. At the same time, the mass-loss rate derived in our analysis is an order of magnitude lower than the values considered in the evolutionary calculations. Based on a study of the surrounding stellar population and the nearby cluster NGC588, using WFPC2 photometry, we suggest that UIT005 could be in fact a runaway star from this cluster.
85 - R.-P. Kudritzki 2008
A quantitative spectral analysis of 24 A supergiants in the Sculptor Group spiral galaxy NGC 300 at a distance of 1.9 Mpc is presented. A new method is introduced to analyze low resolution (~5 AE) spectra, which yields metallicities accurate to 0.2 d ex including the uncertainties arising from the errors in Teff (5%) and log g (0.2 dex). For the first time the stellar metallicity gradient based on elements such as titanium and iron in a galaxy beyond the Local Group is investigated. Solar metallicity is measured in the center and 0.3 solar in the outskirts and a logarithmic gradient of -0.08 dex/kpc. An average reddening of E(B-V)~0.12 mag is obtained, however with a large variation from 0.07 to 0.24 mag. We also determine stellar radii, luminosities and masses and discuss the evolutionary status. Finally, the observed relationship between absolute bolometric magnitudes M_{bol} and flux weighted gravities g_{F} = g/Teff^4 is investigated. At high temperatures the strengths of the Balmer lines depends solely on the flux-weighted gravity, which allows a precise direct determination of log g_{F} with an accuracy of 0.05 to 0.1 dex. We find a tight relationship between M_{bol} and log g_{F} in agreement with stellar evolution theory. Combining these new results with previous work on Local Group galaxies we obtain a new flux weighted gravity luminosity relationship (FGLR), which is very well defined and appears to be an excellent alternative tool to determine distances to galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا