ترغب بنشر مسار تعليمي؟ اضغط هنا

The cores of clusters at 0 $lesssim$ z $lesssim$ 1 are dominated by quiescent early-type galaxies, whereas the field is dominated by star-forming late-type ones. Galaxy properties, notably the star formation (SF) ability, are altered as they fall int o overdense regions. The critical issues to understand this evolution are how the truncation of SF is connected to the morphological transformation and the responsible physical mechanism. The GaLAxy Cluster Evolution Survey (GLACE) is conducting a study on the variation of galaxy properties (SF, AGN, morphology) as a function of environment in a representative sample of clusters. A deep survey of emission line galaxies (ELG) is being performed, mapping a set of optical lines ([OII], [OIII], H$beta$ and H$alpha$/[NII]) in several clusters at z $sim$ 0.40, 0.63 and 0.86. Using the Tunable Filters (TF) of OSIRIS/GTC, GLACE applies the technique of TF tomography: for each line, a set of images at different wavelengths are taken through the TF, to cover a rest frame velocity range of several thousands km/s. The first GLACE results target the H$alpha$/[NII] lines in the cluster ZwCl 0024.0+1652 at z = 0.395 covering $sim$ 2 $times$ r$_{vir}$. We discuss the techniques devised to process the TF tomography observations to generate the catalogue of H$alpha$ emitters of 174 unique cluster sources down to a SFR below 1 M$_{odot}$/yr. The AGN population is discriminated using different diagnostics and found to be $sim$ 37% of the ELG population. The median SFR is 1.4 M$_{odot}$/yr. We have studied the spatial distribution of ELG, confirming the existence of two components in the redshift space. Finally, we have exploited the outstanding spectral resolution of the TF to estimate the cluster mass from ELG dynamics, finding M$_{200}$ = 4.1 $times$ 10$^{14}$ M$_{odot} h^{-1}$, in agreement with previous weak-lensing estimates.
We present the activities carried out to calibrate and characterise the performance of the elements of attitude control and measurement on board the Herschel spacecraft. The main calibration parameters and the evolution of the indicators of the point ing performance are described, from the initial values derived from the observations carried out in the performance verification phase to those attained in the last year and half of mission, an absolute pointing error around or even below 1 arcsec, a spatial relative pointing error of some 1 arcsec and a pointing stability below 0.2 arsec. The actions carried out at the ground segment to improve the spacecraft pointing measurements are outlined. On-going and future developments towards a final refinement of the Herschel astrometry are also summarised. A brief description of the different components of the attitude control and measurement system (both in the space and in the ground segments) is also given for reference. We stress the importance of the cooperation between the different actors (scientists, flight dynamics and systems engineers, attitude control and measurement hardware designers, star-tracker manufacturers, etc.) to attain the final level of performance.
We present the Seyfert and star formation Activity in the Far-InfraRed (SAFIR) project, a small (15.1h) Herschel guaranteed time proposal performing PACS and SPIRE imaging of a small sample of nearby Seyfert galaxies. This project is aimed at studyin g the physical nature of the nuclear IR emission by means of multi-component spectral energy distribution (SED) fitting and the star formation properties of AGN hosts, as traced by cold dust. We summarize the results achieved so far and outline the on-going work.
Aimed at understanding the evolution of galaxies in clusters, the GLACE survey is mapping a set of optical lines ([OII]3727, [OIII]5007, Hbeta and Halpha/[NII] when possible) in several galaxy clusters at redshift around 0.40, 0.63 and 0.86, using th e Tuneable Filters (TF) of the OSIRIS instrument (Cepa et al. 2005) at the 10.4m GTC telescope. This study will address key questions about the physical processes acting upon the infalling galaxies during the course of hierarchical growth of clusters. GLACE is already ongoing: we present some preliminary results on our observations of the galaxy cluster Cl0024+1654 at z = 0.395; on the other hand, [email protected] has been approved as ESO/GTC large project to be started in 2011.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا