ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^ 11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
We present the sub-millimeter spectra from 450 GHz to 1550 GHz of eleven nearby active galaxies observed with the SPIRE Fourier Transform Spectrometer (SPIRE/FTS) onboard Herschel. We detect CO transitions from J_up = 4 to 12, as well as the two [CI] fine structure lines at 492 and 809 GHz and the [NII] 461 GHz line. We used radiative transfer models to analyze the observed CO spectral line energy distributions (SLEDs). The FTS CO data were complemented with ground-based observations of the low-J CO lines. We found that the warm molecular gas traced by the mid-J CO transitions has similar physical conditions (n_H2 ~ 10^3.2 - 10^3.9 cm^-3 and T_kin ~ 300 - 800 K) in most of our galaxies. Furthermore, we found that this warm gas is likely producing the mid-IR rotational H2 emission. We could not determine the specific heating mechanism of the warm gas, however it is possibly related to the star-formation activity in these galaxies. Our modeling of the [CI] emission suggests that it is produced in cold (T_kin < 30 K) and dense (n_H2 > 10^3 cm^-3) molecular gas. Transitions of other molecules are often detected in our SPIRE/FTS spectra. The HF J=1-0 transition at 1232 GHz is detected in absorption in UGC05101 and in emission in NGC7130. In the latter, near-infrared pumping, chemical pumping, or collisional excitation with electrons are plausible excitation mechanisms likely related to the AGN of this galaxy. In some galaxies few H2O emission lines are present. Additionally, three OH+ lines at 909, 971, and 1033 GHz are identified in NGC7130.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا